Abstract:Generating regulatorily compliant Suspicious Activity Report (SAR) remains a high-cost, low-scalability bottleneck in Anti-Money Laundering (AML) workflows. While large language models (LLMs) offer promising fluency, they suffer from factual hallucination, limited crime typology alignment, and poor explainability -- posing unacceptable risks in compliance-critical domains. This paper introduces Co-Investigator AI, an agentic framework optimized to produce Suspicious Activity Reports (SARs) significantly faster and with greater accuracy than traditional methods. Drawing inspiration from recent advances in autonomous agent architectures, such as the AI Co-Scientist, our approach integrates specialized agents for planning, crime type detection, external intelligence gathering, and compliance validation. The system features dynamic memory management, an AI-Privacy Guard layer for sensitive data handling, and a real-time validation agent employing the Agent-as-a-Judge paradigm to ensure continuous narrative quality assurance. Human investigators remain firmly in the loop, empowered to review and refine drafts in a collaborative workflow that blends AI efficiency with domain expertise. We demonstrate the versatility of Co-Investigator AI across a range of complex financial crime scenarios, highlighting its ability to streamline SAR drafting, align narratives with regulatory expectations, and enable compliance teams to focus on higher-order analytical work. This approach marks the beginning of a new era in compliance reporting -- bringing the transformative benefits of AI agents to the core of regulatory processes and paving the way for scalable, reliable, and transparent SAR generation.
Abstract:Recent advances in neuroimaging analysis have enabled accurate decoding of mental state from brain activation patterns during functional magnetic resonance imaging scans. A commonly applied tool for this purpose is principal components regression regularized with the least absolute shrinkage and selection operator (LASSO PCR), a type of multi-voxel pattern analysis (MVPA). This model presumes that all components are equally likely to harbor relevant information, when in fact the task-related signal may be concentrated in specific components. In such cases, the model will fail to select the optimal set of principal components that maximizes the total signal relevant to the cognitive process under study. Here, we present modifications to LASSO PCR that allow for a regularization penalty tied directly to the index of the principal component, reflecting a prior belief that task-relevant signal is more likely to be concentrated in components explaining greater variance. Additionally, we propose a novel hybrid method, Joint Sparsity-Ranked LASSO (JSRL), which integrates component-level and voxel-level activity under an information parity framework and imposes ranked sparsity to guide component selection. We apply the models to brain activation during risk taking, monetary incentive, and emotion regulation tasks. Results demonstrate that incorporating sparsity ranking into LASSO PCR produces models with enhanced classification performance, with JSRL achieving up to 51.7\% improvement in cross-validated deviance $R^2$ and 7.3\% improvement in cross-validated AUC. Furthermore, sparsity-ranked models perform as well as or better than standard LASSO PCR approaches across all classification tasks and allocate predictive weight to brain regions consistent with their established functional roles, offering a robust alternative for MVPA.
Abstract:In traffic engineering, the fixed-time traffic signal control remains widely used for its low cost, stability, and interpretability. However, its design depends on hand-crafted formulas (e.g., Webster) and manual re-timing by engineers to adapt to demand changes, which is labor-intensive and often yields suboptimal results under heterogeneous or congested conditions. This paper introduces the EvolveSignal, a large language models (LLMs) powered coding agent to automatically discover new traffic signal control algorithms. We formulate the problem as program synthesis, where candidate algorithms are represented as Python functions with fixed input-output structures, and iteratively optimized through external evaluations (e.g., a traffic simulator) and evolutionary search. Experiments on a signalized intersection demonstrate that the discovered algorithms outperform Webster's baseline, reducing average delay by 20.1% and average stops by 47.1%. Beyond performance, ablation and incremental analyses reveal that EvolveSignal modifications-such as adjusting cycle length bounds, incorporating right-turn demand, and rescaling green allocations-can offer practically meaningful insights for traffic engineers. This work opens a new research direction by leveraging AI for algorithm design in traffic signal control, bridging program synthesis with transportation engineering.
Abstract:Intraocular foreign body removal demands millimeter-level precision in confined intraocular spaces, yet existing robotic systems predominantly rely on manual teleoperation with steep learning curves. To address the challenges of autonomous manipulation (particularly kinematic uncertainties from variable motion scaling and variation of the Remote Center of Motion (RCM) point), we propose AutoRing, an imitation learning framework for autonomous intraocular foreign body ring manipulation. Our approach integrates dynamic RCM calibration to resolve coordinate-system inconsistencies caused by intraocular instrument variation and introduces the RCM-ACT architecture, which combines action-chunking transformers with real-time kinematic realignment. Trained solely on stereo visual data and instrument kinematics from expert demonstrations in a biomimetic eye model, AutoRing successfully completes ring grasping and positioning tasks without explicit depth sensing. Experimental validation demonstrates end-to-end autonomy under uncalibrated microscopy conditions. The results provide a viable framework for developing intelligent eye-surgical systems capable of complex intraocular procedures.
Abstract:Conventional single-dataset training often fails with new data distributions, especially in ultrasound (US) image analysis due to limited data, acoustic shadows, and speckle noise. Therefore, constructing a universal framework for multi-heterogeneous US datasets is imperative. However, a key challenge arises: how to effectively mitigate inter-dataset interference while preserving dataset-specific discriminative features for robust downstream task? Previous approaches utilize either a single source-specific decoder or a domain adaptation strategy, but these methods experienced a decline in performance when applied to other domains. Considering this, we propose a Universal Collaborative Mixture of Heterogeneous Source-Specific Experts (COME). Specifically, COME establishes dual structure-semantic shared experts that create a universal representation space and then collaborate with source-specific experts to extract discriminative features through providing complementary features. This design enables robust generalization by leveraging cross-datasets experience distributions and providing universal US priors for small-batch or unseen data scenarios. Extensive experiments under three evaluation modes (single-dataset, intra-organ, and inter-organ integration datasets) demonstrate COME's superiority, achieving significant mean AP improvements over state-of-the-art methods. Our project is available at: https://universalcome.github.io/UniversalCOME/.
Abstract:It is a challenging task for ground robots to autonomously navigate in harsh environments due to the presence of non-trivial obstacles and uneven terrain. This requires trajectory planning that balances safety and efficiency. The primary challenge is to generate a feasible trajectory that prevents robot from tip-over while ensuring effective navigation. In this paper, we propose a capsizing-aware trajectory planner (CAP) to achieve trajectory planning on the uneven terrain. The tip-over stability of the robot on rough terrain is analyzed. Based on the tip-over stability, we define the traversable orientation, which indicates the safe range of robot orientations. This orientation is then incorporated into a capsizing-safety constraint for trajectory optimization. We employ a graph-based solver to compute a robust and feasible trajectory while adhering to the capsizing-safety constraint. Extensive simulation and real-world experiments validate the effectiveness and robustness of the proposed method. The results demonstrate that CAP outperforms existing state-of-the-art approaches, providing enhanced navigation performance on uneven terrains.
Abstract:Humans possess an exceptional ability to imagine 4D scenes, encompassing both motion and 3D geometry, from a single still image. This ability is rooted in our accumulated observations of similar scenes and an intuitive understanding of physics. In this paper, we aim to replicate this capacity in neural networks, specifically focusing on natural fluid imagery. Existing methods for this task typically employ simplistic 2D motion estimators to animate the image, leading to motion predictions that often defy physical principles, resulting in unrealistic animations. Our approach introduces a novel method for generating 4D scenes with physics-consistent animation from a single image. We propose the use of a physics-informed neural network that predicts motion for each surface point, guided by a loss term derived from fundamental physical principles, including the Navier-Stokes equations. To capture appearance, we predict feature-based 3D Gaussians from the input image and its estimated depth, which are then animated using the predicted motions and rendered from any desired camera perspective. Experimental results highlight the effectiveness of our method in producing physically plausible animations, showcasing significant performance improvements over existing methods. Our project page is https://physfluid.github.io/ .
Abstract:The rapid development of artificial intelligence has driven smart health with next-generation wireless communication technologies, stimulating exciting applications in remote diagnosis and intervention. To enable a timely and effective response for remote healthcare, efficient transmission of medical data through noisy channels with limited bandwidth emerges as a critical challenge. In this work, we propose a novel diffusion-based semantic communication framework, namely DiSC-Med, for the medical image transmission, where medical-enhanced compression and denoising blocks are developed for bandwidth efficiency and robustness, respectively. Unlike conventional pixel-wise communication framework, our proposed DiSC-Med is able to capture the key semantic information and achieve superior reconstruction performance with ultra-high bandwidth efficiency against noisy channels. Extensive experiments on real-world medical datasets validate the effectiveness of our framework, demonstrating its potential for robust and efficient telehealth applications.
Abstract:Generalized Advantage Estimation (GAE) has been used to mitigate the computational complexity of reinforcement learning (RL) by employing an exponentially weighted estimation of the advantage function to reduce the variance in policy gradient estimates. Despite its effectiveness, GAE is not designed to handle value distributions integral to distributional RL, which can capture the inherent stochasticity in systems and is hence more robust to system noises. To address this gap, we propose a novel approach that utilizes the optimal transport theory to introduce a Wasserstein-like directional metric, which measures both the distance and the directional discrepancies between probability distributions. Using the exponentially weighted estimation, we leverage this Wasserstein-like directional metric to derive distributional GAE (DGAE). Similar to traditional GAE, our proposed DGAE provides a low-variance advantage estimate with controlled bias, making it well-suited for policy gradient algorithms that rely on advantage estimation for policy updates. We integrated DGAE into three different policy gradient methods. Algorithms were evaluated across various OpenAI Gym environments and compared with the baselines with traditional GAE to assess the performance.
Abstract:Depth estimation is a fundamental task in 3D computer vision, crucial for applications such as 3D reconstruction, free-viewpoint rendering, robotics, autonomous driving, and AR/VR technologies. Traditional methods relying on hardware sensors like LiDAR are often limited by high costs, low resolution, and environmental sensitivity, limiting their applicability in real-world scenarios. Recent advances in vision-based methods offer a promising alternative, yet they face challenges in generalization and stability due to either the low-capacity model architectures or the reliance on domain-specific and small-scale datasets. The emergence of scaling laws and foundation models in other domains has inspired the development of "depth foundation models": deep neural networks trained on large datasets with strong zero-shot generalization capabilities. This paper surveys the evolution of deep learning architectures and paradigms for depth estimation across the monocular, stereo, multi-view, and monocular video settings. We explore the potential of these models to address existing challenges and provide a comprehensive overview of large-scale datasets that can facilitate their development. By identifying key architectures and training strategies, we aim to highlight the path towards robust depth foundation models, offering insights into their future research and applications.