Abstract:Humanoid whole-body loco-manipulation promises transformative capabilities for daily service and warehouse tasks. While recent advances in general motion tracking (GMT) have enabled humanoids to reproduce diverse human motions, these policies lack the precision and object awareness required for loco-manipulation. To this end, we introduce ResMimic, a two-stage residual learning framework for precise and expressive humanoid control from human motion data. First, a GMT policy, trained on large-scale human-only motion, serves as a task-agnostic base for generating human-like whole-body movements. An efficient but precise residual policy is then learned to refine the GMT outputs to improve locomotion and incorporate object interaction. To further facilitate efficient training, we design (i) a point-cloud-based object tracking reward for smoother optimization, (ii) a contact reward that encourages accurate humanoid body-object interactions, and (iii) a curriculum-based virtual object controller to stabilize early training. We evaluate ResMimic in both simulation and on a real Unitree G1 humanoid. Results show substantial gains in task success, training efficiency, and robustness over strong baselines. Videos are available at https://resmimic.github.io/ .
Abstract:We present SPARC, a compact, open-source 3-DoF sagittal-plane spine module that combines revolute (pitch) and prismatic (axial) motion with programmable task-space impedance for quadruped robots. The system integrates three torque-controlled actuators, a custom 1 kHz control board, and a protected power unit in a 1.26 kg package, enabling closed-loop stiffness and damping shaping along x, z, and theta. We develop an RNEA-based computed-acceleration controller with smooth Stribeck friction compensation to render spring-damper behavior without explicit inertia shaping. Bench experiments validate the approach. Quasi-static push-pull tests show linear force-displacement characteristics with commanded horizontal stiffness spanning 300-700 N/m and <= 1.5% relative error (R^2 >= 0.992, narrow 95% CIs). Dynamic displace-and-release trials confirm mass-spring-damper responses over multiple damping settings, with small, interpretable phase deviations due to configuration-dependent inertia and low-speed friction effects. A task-space PD controller produces roughly linear stiffness but with greater variability and coupling sensitivity. SPARC provides a portable platform for systematic studies of spine compliance in legged locomotion and will be released with complete hardware and firmware resources.
Abstract:The rise of Large Language Models (LLMs) is reshaping multimodel models, with speech synthesis being a prominent application. However, existing approaches often underutilize the linguistic intelligence of these models, typically failing to leverage their powerful instruction-following capabilities. This limitation hinders the model's ability to follow text instructions for controllable Text-to-Speech~(TTS). To address this, we propose a new paradigm inspired by ``operationalism'' that decouples instruction understanding from speech generation. We introduce BatonVoice, a framework where an LLM acts as a ``conductor'', understanding user instructions and generating a textual ``plan'' -- explicit vocal features (e.g., pitch, energy). A separate TTS model, the ``orchestra'', then generates the speech from these features. To realize this component, we develop BatonTTS, a TTS model trained specifically for this task. Our experiments demonstrate that BatonVoice achieves strong performance in controllable and emotional speech synthesis, outperforming strong open- and closed-source baselines. Notably, our approach enables remarkable zero-shot cross-lingual generalization, accurately applying feature control abilities to languages unseen during post-training. This demonstrates that objectifying speech into textual vocal features can more effectively unlock the linguistic intelligence of LLMs.
Abstract:Vision-language-action policies learn manipulation skills across tasks, environments and embodiments through large-scale pre-training. However, their ability to generalize to novel robot configurations remains limited. Most approaches emphasize model size, dataset scale and diversity while paying less attention to the design of action spaces. This leads to the configuration generalization problem, which requires costly adaptation. We address this challenge by formulating cross-embodiment pre-training as designing policies equivariant to embodiment configuration transformations. Building on this principle, we propose a framework that (i) establishes a embodiment equivariance theory for action space and policy design, (ii) introduces an action decoder that enforces configuration equivariance, and (iii) incorporates a geometry-aware network architecture to enhance embodiment-agnostic spatial reasoning. Extensive experiments in both simulation and real-world settings demonstrate that our approach improves pre-training effectiveness and enables efficient fine-tuning on novel robot embodiments. Our code is available at https://github.com/hhcaz/e2vla
Abstract:Bird's-Eye-View (BEV) representation offers a metric-scaled planar workspace, facilitating the simplification of 6-DoF ego-motion to a more robust 3-DoF model for monocular visual odometry (MVO) in intelligent transportation systems. However, existing BEV methods suffer from sparse supervision signals and information loss during perspective-to-BEV projection. We present BEV-ODOM2, an enhanced framework addressing both limitations without additional annotations. Our approach introduces: (1) dense BEV optical flow supervision constructed from 3-DoF pose ground truth for pixel-level guidance; (2) PV-BEV fusion that computes correlation volumes before projection to preserve 6-DoF motion cues while maintaining scale consistency. The framework employs three supervision levels derived solely from pose data: dense BEV flow, 5-DoF for the PV branch, and final 3-DoF output. Enhanced rotation sampling further balances diverse motion patterns in training. Extensive evaluation on KITTI, NCLT, Oxford, and our newly collected ZJH-VO multi-scale dataset demonstrates state-of-the-art performance, achieving 40 improvement in RTE compared to previous BEV methods. The ZJH-VO dataset, covering diverse ground vehicle scenarios from underground parking to outdoor plazas, is publicly available to facilitate future research.
Abstract:Generating regulatorily compliant Suspicious Activity Report (SAR) remains a high-cost, low-scalability bottleneck in Anti-Money Laundering (AML) workflows. While large language models (LLMs) offer promising fluency, they suffer from factual hallucination, limited crime typology alignment, and poor explainability -- posing unacceptable risks in compliance-critical domains. This paper introduces Co-Investigator AI, an agentic framework optimized to produce Suspicious Activity Reports (SARs) significantly faster and with greater accuracy than traditional methods. Drawing inspiration from recent advances in autonomous agent architectures, such as the AI Co-Scientist, our approach integrates specialized agents for planning, crime type detection, external intelligence gathering, and compliance validation. The system features dynamic memory management, an AI-Privacy Guard layer for sensitive data handling, and a real-time validation agent employing the Agent-as-a-Judge paradigm to ensure continuous narrative quality assurance. Human investigators remain firmly in the loop, empowered to review and refine drafts in a collaborative workflow that blends AI efficiency with domain expertise. We demonstrate the versatility of Co-Investigator AI across a range of complex financial crime scenarios, highlighting its ability to streamline SAR drafting, align narratives with regulatory expectations, and enable compliance teams to focus on higher-order analytical work. This approach marks the beginning of a new era in compliance reporting -- bringing the transformative benefits of AI agents to the core of regulatory processes and paving the way for scalable, reliable, and transparent SAR generation.
Abstract:Recent advances in neuroimaging analysis have enabled accurate decoding of mental state from brain activation patterns during functional magnetic resonance imaging scans. A commonly applied tool for this purpose is principal components regression regularized with the least absolute shrinkage and selection operator (LASSO PCR), a type of multi-voxel pattern analysis (MVPA). This model presumes that all components are equally likely to harbor relevant information, when in fact the task-related signal may be concentrated in specific components. In such cases, the model will fail to select the optimal set of principal components that maximizes the total signal relevant to the cognitive process under study. Here, we present modifications to LASSO PCR that allow for a regularization penalty tied directly to the index of the principal component, reflecting a prior belief that task-relevant signal is more likely to be concentrated in components explaining greater variance. Additionally, we propose a novel hybrid method, Joint Sparsity-Ranked LASSO (JSRL), which integrates component-level and voxel-level activity under an information parity framework and imposes ranked sparsity to guide component selection. We apply the models to brain activation during risk taking, monetary incentive, and emotion regulation tasks. Results demonstrate that incorporating sparsity ranking into LASSO PCR produces models with enhanced classification performance, with JSRL achieving up to 51.7\% improvement in cross-validated deviance $R^2$ and 7.3\% improvement in cross-validated AUC. Furthermore, sparsity-ranked models perform as well as or better than standard LASSO PCR approaches across all classification tasks and allocate predictive weight to brain regions consistent with their established functional roles, offering a robust alternative for MVPA.
Abstract:In traffic engineering, the fixed-time traffic signal control remains widely used for its low cost, stability, and interpretability. However, its design depends on hand-crafted formulas (e.g., Webster) and manual re-timing by engineers to adapt to demand changes, which is labor-intensive and often yields suboptimal results under heterogeneous or congested conditions. This paper introduces the EvolveSignal, a large language models (LLMs) powered coding agent to automatically discover new traffic signal control algorithms. We formulate the problem as program synthesis, where candidate algorithms are represented as Python functions with fixed input-output structures, and iteratively optimized through external evaluations (e.g., a traffic simulator) and evolutionary search. Experiments on a signalized intersection demonstrate that the discovered algorithms outperform Webster's baseline, reducing average delay by 20.1% and average stops by 47.1%. Beyond performance, ablation and incremental analyses reveal that EvolveSignal modifications-such as adjusting cycle length bounds, incorporating right-turn demand, and rescaling green allocations-can offer practically meaningful insights for traffic engineers. This work opens a new research direction by leveraging AI for algorithm design in traffic signal control, bridging program synthesis with transportation engineering.
Abstract:Intraocular foreign body removal demands millimeter-level precision in confined intraocular spaces, yet existing robotic systems predominantly rely on manual teleoperation with steep learning curves. To address the challenges of autonomous manipulation (particularly kinematic uncertainties from variable motion scaling and variation of the Remote Center of Motion (RCM) point), we propose AutoRing, an imitation learning framework for autonomous intraocular foreign body ring manipulation. Our approach integrates dynamic RCM calibration to resolve coordinate-system inconsistencies caused by intraocular instrument variation and introduces the RCM-ACT architecture, which combines action-chunking transformers with real-time kinematic realignment. Trained solely on stereo visual data and instrument kinematics from expert demonstrations in a biomimetic eye model, AutoRing successfully completes ring grasping and positioning tasks without explicit depth sensing. Experimental validation demonstrates end-to-end autonomy under uncalibrated microscopy conditions. The results provide a viable framework for developing intelligent eye-surgical systems capable of complex intraocular procedures.
Abstract:Conventional single-dataset training often fails with new data distributions, especially in ultrasound (US) image analysis due to limited data, acoustic shadows, and speckle noise. Therefore, constructing a universal framework for multi-heterogeneous US datasets is imperative. However, a key challenge arises: how to effectively mitigate inter-dataset interference while preserving dataset-specific discriminative features for robust downstream task? Previous approaches utilize either a single source-specific decoder or a domain adaptation strategy, but these methods experienced a decline in performance when applied to other domains. Considering this, we propose a Universal Collaborative Mixture of Heterogeneous Source-Specific Experts (COME). Specifically, COME establishes dual structure-semantic shared experts that create a universal representation space and then collaborate with source-specific experts to extract discriminative features through providing complementary features. This design enables robust generalization by leveraging cross-datasets experience distributions and providing universal US priors for small-batch or unseen data scenarios. Extensive experiments under three evaluation modes (single-dataset, intra-organ, and inter-organ integration datasets) demonstrate COME's superiority, achieving significant mean AP improvements over state-of-the-art methods. Our project is available at: https://universalcome.github.io/UniversalCOME/.