Department of Computer Science and Engineering, University of Gothenburg, Sweden
Abstract:This paper proposes a dual divide-and-optimize algorithm (DualOpt) for solving the large-scale traveling salesman problem (TSP). DualOpt combines two complementary strategies to improve both solution quality and computational efficiency. The first strategy is a grid-based divide-and-conquer procedure that partitions the TSP into smaller sub-problems, solving them in parallel and iteratively refining the solution by merging nodes and partial routes. The process continues until only one grid remains, yielding a high-quality initial solution. The second strategy involves a path-based divide-and-optimize procedure that further optimizes the solution by dividing it into sub-paths, optimizing each using a neural solver, and merging them back to progressively improve the overall solution. Extensive experiments conducted on two groups of TSP benchmark instances, including randomly generated instances with up to 100,000 nodes and real-world datasets from TSPLIB, demonstrate the effectiveness of DualOpt. The proposed DualOpt achieves highly competitive results compared to 10 state-of-the-art algorithms in the literature. In particular, DualOpt achieves an improvement gap up to 1.40% for the largest instance TSP100K with a remarkable 104x speed-up over the leading heuristic solver LKH3. Additionally, DualOpt demonstrates strong generalization on TSPLIB benchmarks, confirming its capability to tackle diverse real-world TSP applications.
Abstract:Addressing the unavoidable bias inherent in supervised aging clocks, we introduce Sundial, a novel framework that models molecular dynamics through a diffusion field, capturing both the population-level aging process and the individual-level relative aging order. Sundial enables unbiasedestimation of biological age and the forecast of aging roadmap. Fasteraging individuals from Sundial exhibit a higher disease risk compared to those identified from supervised aging clocks. This framework opens new avenues for exploring key topics, including age- and sex-specific aging dynamics and faster yet healthy aging paths.
Abstract:Deep learning (DL) methods, especially those based on physics-driven DL, have become the state-of-the-art for reconstructing sub-sampled magnetic resonance imaging (MRI) data. However, studies have shown that these methods are susceptible to small adversarial input perturbations, or attacks, resulting in major distortions in the output images. Various strategies have been proposed to reduce the effects of these attacks, but they require retraining and may lower reconstruction quality for non-perturbed/clean inputs. In this work, we propose a novel approach for detecting and mitigating adversarial attacks on MRI reconstruction models without any retraining. Our detection strategy is based on the idea of cyclic measurement consistency. The output of the model is mapped to another set of MRI measurements for a different sub-sampling pattern, and this synthesized data is reconstructed with the same model. Intuitively, without an attack, the second reconstruction is expected to be consistent with the first, while with an attack, disruptions are present. Subsequently, this idea is extended to devise a novel objective function, which is minimized within a small ball around the attack input for mitigation. Experimental results show that our method substantially reduces the impact of adversarial perturbations across different datasets, attack types/strengths and PD-DL networks, and qualitatively and quantitatively outperforms conventional mitigation methods that involve retraining.
Abstract:Generating high-quality videos from textual descriptions poses challenges in maintaining temporal coherence and control over subject motion. We propose VAST (Video As Storyboard from Text), a two-stage framework to address these challenges and enable high-quality video generation. In the first stage, StoryForge transforms textual descriptions into detailed storyboards, capturing human poses and object layouts to represent the structural essence of the scene. In the second stage, VisionForge generates videos from these storyboards, producing high-quality videos with smooth motion, temporal consistency, and spatial coherence. By decoupling text understanding from video generation, VAST enables precise control over subject dynamics and scene composition. Experiments on the VBench benchmark demonstrate that VAST outperforms existing methods in both visual quality and semantic expression, setting a new standard for dynamic and coherent video generation.
Abstract:Enterprises possess a vast array of API assets scattered across various functions, forming the backbone of existing business processes. By leveraging these APIs as functional tools, enterprises can design diverse, scenario-specific agent applications, driven by on-premise function-calling models as the core engine. However, generic models often fail to meet enterprise requirements in terms of computational efficiency, output accuracy, and stability, necessitating scenario-specific adaptation. In this paper, we propose a training pipeline for function-calling capabilities tailored to real-world business scenarios. This pipeline includes the synthesis and augmentation of scenario-specific function-calling data, model fine-tuning, and performance evaluation and analysis. Using this pipeline, we generated 1,260 fully AI-generated samples and 1,035 augmented manually-labeled samples in digital HR agent scenario. The Qwen2.5-Coder-7B-Instruct model was employed as the base model and fine-tuned using the LoRA method on four GPUs with 24GB VRAM. Our fine-tuned model demonstrated outstanding performance in evaluations and practical applications, surpassing GPT-4 and GPT-4o in accuracy on the test set. These results validate the reliability of the proposed pipeline for training scenario-specific function-calling models.
Abstract:Mathematics olympiads are prestigious competitions, with problem proposing and solving highly honored. Building artificial intelligence that proposes and solves olympiads presents an unresolved challenge in automated theorem discovery and proving, especially in geometry for its combination of numerical and spatial elements. We introduce TongGeometry, a Euclidean geometry system supporting tree-search-based guided problem proposing and solving. The efficient geometry system establishes the most extensive repository of geometry theorems to date: within the same computational budget as the existing state-of-the-art, TongGeometry discovers 6.7 billion geometry theorems requiring auxiliary constructions, including 4.1 billion exhibiting geometric symmetry. Among them, 10 theorems were proposed to regional mathematical olympiads with 3 of TongGeometry's proposals selected in real competitions, earning spots in a national team qualifying exam or a top civil olympiad in China and the US. Guided by fine-tuned large language models, TongGeometry solved all International Mathematical Olympiad geometry in IMO-AG-30, outperforming gold medalists for the first time. It also surpasses the existing state-of-the-art across a broader spectrum of olympiad-level problems. The full capabilities of the system can be utilized on a consumer-grade machine, making the model more accessible and fostering widespread democratization of its use. By analogy, unlike existing systems that merely solve problems like students, TongGeometry acts like a geometry coach, discovering, presenting, and proving theorems.
Abstract:Text-driven style transfer aims to merge the style of a reference image with content described by a text prompt. Recent advancements in text-to-image models have improved the nuance of style transformations, yet significant challenges remain, particularly with overfitting to reference styles, limiting stylistic control, and misaligning with textual content. In this paper, we propose three complementary strategies to address these issues. First, we introduce a cross-modal Adaptive Instance Normalization (AdaIN) mechanism for better integration of style and text features, enhancing alignment. Second, we develop a Style-based Classifier-Free Guidance (SCFG) approach that enables selective control over stylistic elements, reducing irrelevant influences. Finally, we incorporate a teacher model during early generation stages to stabilize spatial layouts and mitigate artifacts. Our extensive evaluations demonstrate significant improvements in style transfer quality and alignment with textual prompts. Furthermore, our approach can be integrated into existing style transfer frameworks without fine-tuning.
Abstract:Generating high-fidelity, controllable, and annotated training data is critical for autonomous driving. Existing methods typically generate a single data form directly from a coarse scene layout, which not only fails to output rich data forms required for diverse downstream tasks but also struggles to model the direct layout-to-data distribution. In this paper, we introduce UniScene, the first unified framework for generating three key data forms - semantic occupancy, video, and LiDAR - in driving scenes. UniScene employs a progressive generation process that decomposes the complex task of scene generation into two hierarchical steps: (a) first generating semantic occupancy from a customized scene layout as a meta scene representation rich in both semantic and geometric information, and then (b) conditioned on occupancy, generating video and LiDAR data, respectively, with two novel transfer strategies of Gaussian-based Joint Rendering and Prior-guided Sparse Modeling. This occupancy-centric approach reduces the generation burden, especially for intricate scenes, while providing detailed intermediate representations for the subsequent generation stages. Extensive experiments demonstrate that UniScene outperforms previous SOTAs in the occupancy, video, and LiDAR generation, which also indeed benefits downstream driving tasks.
Abstract:Predicting pedestrian crossing behavior is important for intelligent traffic systems to avoid pedestrian-vehicle collisions. Most existing pedestrian crossing behavior models are trained and evaluated on datasets collected from a single country, overlooking differences between countries. To address this gap, we compared pedestrian road-crossing behavior at unsignalized crossings in Germany and Japan. We presented four types of machine learning models to predict gap selection behavior, zebra crossing usage, and their trajectories using simulator data collected from both countries. When comparing the differences between countries, pedestrians from the study conducted in Japan are more cautious, selecting larger gaps compared to those in Germany. We evaluate and analyze model transferability. Our results show that neural networks outperform other machine learning models in predicting gap selection and zebra crossing usage, while random forest models perform best on trajectory prediction tasks, demonstrating strong performance and transferability. We develop a transferable model using an unsupervised clustering method, which improves prediction accuracy for gap selection and trajectory prediction. These findings provide a deeper understanding of pedestrian crossing behaviors in different countries and offer valuable insights into model transferability.
Abstract:Generating multi-view human images from a single view is a complex and significant challenge. Although recent advancements in multi-view object generation have shown impressive results with diffusion models, novel view synthesis for humans remains constrained by the limited availability of 3D human datasets. Consequently, many existing models struggle to produce realistic human body shapes or capture fine-grained facial details accurately. To address these issues, we propose an innovative framework that leverages transferred body and facial representations for multi-view human synthesis. Specifically, we use a single-view model pretrained on a large-scale human dataset to develop a multi-view body representation, aiming to extend the 2D knowledge of the single-view model to a multi-view diffusion model. Additionally, to enhance the model's detail restoration capability, we integrate transferred multimodal facial features into our trained human diffusion model. Experimental evaluations on benchmark datasets demonstrate that our approach outperforms the current state-of-the-art methods, achieving superior performance in multi-view human synthesis.