Abstract:Open-vocabulary segmentation aims to identify and segment specific regions and objects based on text-based descriptions. A common solution is to leverage powerful vision-language models (VLMs), such as CLIP, to bridge the gap between vision and text information. However, VLMs are typically pretrained for image-level vision-text alignment, focusing on global semantic features. In contrast, segmentation tasks require fine-grained pixel-level alignment and detailed category boundary information, which VLMs alone cannot provide. As a result, information extracted directly from VLMs can't meet the requirements of segmentation tasks. To address this limitation, we propose FGAseg, a model designed for fine-grained pixel-text alignment and category boundary supplementation. The core of FGAseg is a Pixel-Level Alignment module that employs a cross-modal attention mechanism and a text-pixel alignment loss to refine the coarse-grained alignment from CLIP, achieving finer-grained pixel-text semantic alignment. Additionally, to enrich category boundary information, we introduce the alignment matrices as optimizable pseudo-masks during forward propagation and propose Category Information Supplementation module. These pseudo-masks, derived from cosine and convolutional similarity, provide essential global and local boundary information between different categories. By combining these two strategies, FGAseg effectively enhances pixel-level alignment and category boundary information, addressing key challenges in open-vocabulary segmentation. Extensive experiments demonstrate that FGAseg outperforms existing methods on open-vocabulary semantic segmentation benchmarks.
Abstract:We propose a Greedy strategy to solve the problem of Graph Cut, called GGC. It starts from the state where each data sample is regarded as a cluster and dynamically merges the two clusters which reduces the value of the global objective function the most until the required number of clusters is obtained, and the monotonicity of the sequence of objective function values is proved. To reduce the computational complexity of GGC, only mergers between clusters and their neighbors are considered. Therefore, GGC has a nearly linear computational complexity with respect to the number of samples. Also, unlike other algorithms, due to the greedy strategy, the solution of the proposed algorithm is unique. In other words, its performance is not affected by randomness. We apply the proposed method to solve the problem of normalized cut which is a widely concerned graph cut problem. Extensive experiments show that better solutions can often be achieved compared to the traditional two-stage optimization algorithm (eigendecomposition + k-means), on the normalized cut problem. In addition, the performance of GGC also has advantages compared to several state-of-the-art clustering algorithms.
Abstract:Generating high-quality videos from textual descriptions poses challenges in maintaining temporal coherence and control over subject motion. We propose VAST (Video As Storyboard from Text), a two-stage framework to address these challenges and enable high-quality video generation. In the first stage, StoryForge transforms textual descriptions into detailed storyboards, capturing human poses and object layouts to represent the structural essence of the scene. In the second stage, VisionForge generates videos from these storyboards, producing high-quality videos with smooth motion, temporal consistency, and spatial coherence. By decoupling text understanding from video generation, VAST enables precise control over subject dynamics and scene composition. Experiments on the VBench benchmark demonstrate that VAST outperforms existing methods in both visual quality and semantic expression, setting a new standard for dynamic and coherent video generation.
Abstract:With the advancement of pre-trained vision-language (VL) models, enhancing the alignment between visual and linguistic modalities in downstream tasks has emerged as a critical challenge. Different from existing fine-tuning methods that add extra modules to these two modalities, we investigate whether the frozen model can be fine-tuned by customized noise. Our approach is motivated by the scientific study of beneficial noise, namely Positive-incentive Noise (Pi-noise or $\pi$-noise) , which quantitatively analyzes the impact of noise. It therefore implies a new scheme to learn beneficial noise distribution that can be employed to fine-tune VL models. Focusing on few-shot classification tasks based on CLIP, we reformulate the inference process of CLIP and apply variational inference, demonstrating how to generate $\pi$-noise towards visual and linguistic modalities. Then, we propose Positive-incentive Noise Injector (PiNI), which can fine-tune CLIP via injecting noise into both visual and text encoders. Since the proposed method can learn the distribution of beneficial noise, we can obtain more diverse embeddings of vision and language to better align these two modalities for specific downstream tasks within limited computational resources. We evaluate different noise incorporation approaches and network architectures of PiNI. The evaluation across 11 datasets demonstrates its effectiveness.
Abstract:Graph contrastive learning (GCL) has been widely used as an effective self-supervised learning method for graph representation learning. However, how to apply adequate and stable graph augmentation to generating proper views for contrastive learning remains an essential problem. Dropping edges is a primary augmentation in GCL while adding edges is not a common method due to its unstable performance. To our best knowledge, there is no theoretical analysis to study why dropping edges usually outperforms adding edges. To answer this question, we introduce a new metric, namely Error Passing Rate (EPR), to quantify how a graph fits the network. Inspired by the theoretical conclusions, we propose a novel GCL algorithm, Error-PAssing-based Graph Contrastive Learning (EPAGCL), which uses both edge adding and edge dropping as its augmentation. To be specific, we generate views by adding and dropping edges according to the weights derived from EPR. Extensive experiments on various real-world datasets are conducted to validate the correctness of our theoretical analysis and the effectiveness of our proposed algorithm.
Abstract:Recent advances in imitation learning for 3D robotic manipulation have shown promising results with diffusion-based policies. However, achieving human-level dexterity requires seamless integration of geometric precision and semantic understanding. We present G3Flow, a novel framework that constructs real-time semantic flow, a dynamic, object-centric 3D semantic representation by leveraging foundation models. Our approach uniquely combines 3D generative models for digital twin creation, vision foundation models for semantic feature extraction, and robust pose tracking for continuous semantic flow updates. This integration enables complete semantic understanding even under occlusions while eliminating manual annotation requirements. By incorporating semantic flow into diffusion policies, we demonstrate significant improvements in both terminal-constrained manipulation and cross-object generalization. Extensive experiments across five simulation tasks show that G3Flow consistently outperforms existing approaches, achieving up to 68.3% and 50.1% average success rates on terminal-constrained manipulation and cross-object generalization tasks respectively. Our results demonstrate the effectiveness of G3Flow in enhancing real-time dynamic semantic feature understanding for robotic manipulation policies.
Abstract:Vision-and-Language Navigation (VLN), where an agent follows instructions to reach a target destination, has recently seen significant advancements. In contrast to navigation in discrete environments with predefined trajectories, VLN in Continuous Environments (VLN-CE) presents greater challenges, as the agent is free to navigate any unobstructed location and is more vulnerable to visual occlusions or blind spots. Recent approaches have attempted to address this by imagining future environments, either through predicted future visual images or semantic features, rather than relying solely on current observations. However, these RGB-based and feature-based methods lack intuitive appearance-level information or high-level semantic complexity crucial for effective navigation. To overcome these limitations, we introduce a novel, generalizable 3DGS-based pre-training paradigm, called UnitedVLN, which enables agents to better explore future environments by unitedly rendering high-fidelity 360 visual images and semantic features. UnitedVLN employs two key schemes: search-then-query sampling and separate-then-united rendering, which facilitate efficient exploitation of neural primitives, helping to integrate both appearance and semantic information for more robust navigation. Extensive experiments demonstrate that UnitedVLN outperforms state-of-the-art methods on existing VLN-CE benchmarks.
Abstract:Open-vocabulary 3D scene understanding is indispensable for embodied agents. Recent works leverage pretrained vision-language models (VLMs) for object segmentation and project them to point clouds to build 3D maps. Despite progress, a point cloud is a set of unordered coordinates that requires substantial storage space and does not directly convey occupancy information or spatial relation, making existing methods inefficient for downstream tasks, e.g., path planning and complex text-based object retrieval. To address these issues, we propose Octree-Graph, a novel scene representation for open-vocabulary 3D scene understanding. Specifically, a Chronological Group-wise Segment Merging (CGSM) strategy and an Instance Feature Aggregation (IFA) algorithm are first designed to get 3D instances and corresponding semantic features. Subsequently, an adaptive-octree structure is developed that stores semantics and depicts the occupancy of an object adjustably according to its shape. Finally, the Octree-Graph is constructed where each adaptive-octree acts as a graph node, and edges describe the spatial relations among nodes. Extensive experiments on various tasks are conducted on several widely-used datasets, demonstrating the versatility and effectiveness of our method.
Abstract:Night-to-Day translation (Night2Day) aims to achieve day-like vision for nighttime scenes. However, processing night images with complex degradations remains a significant challenge under unpaired conditions. Previous methods that uniformly mitigate these degradations have proven inadequate in simultaneously restoring daytime domain information and preserving underlying semantics. In this paper, we propose \textbf{N2D3} (\textbf{N}ight-to-\textbf{D}ay via \textbf{D}egradation \textbf{D}isentanglement) to identify different degradation patterns in nighttime images. Specifically, our method comprises a degradation disentanglement module and a degradation-aware contrastive learning module. Firstly, we extract physical priors from a photometric model based on Kubelka-Munk theory. Then, guided by these physical priors, we design a disentanglement module to discriminate among different illumination degradation regions. Finally, we introduce the degradation-aware contrastive learning strategy to preserve semantic consistency across distinct degradation regions. Our method is evaluated on two public datasets, demonstrating a significant improvement in visual quality and considerable potential for benefiting downstream tasks.
Abstract:Recent advancements in large language models (LLMs) and their multimodal variants have led to remarkable progress across various domains, demonstrating impressive capabilities and unprecedented potential. In the era of ubiquitous connectivity, leveraging communication networks to distribute intelligence is a transformative concept, envisioning AI-powered services accessible at the network edge. However, pushing large models from the cloud to resource-constrained environments faces critical challenges. Model inference on low-end devices leads to excessive latency and performance bottlenecks, while raw data transmission over limited bandwidth networks causes high communication overhead. This article presents AI Flow, a framework that streamlines the inference process by jointly leveraging the heterogeneous resources available across devices, edge nodes, and cloud servers, making intelligence flow across networks. To facilitate cooperation among multiple computational nodes, the proposed framework explores a paradigm shift in the design of communication network systems from transmitting information flow to intelligence flow, where the goal of communications is task-oriented and folded into the inference process. Experimental results demonstrate the effectiveness of the proposed framework through an image captioning use case, showcasing the ability to reduce response latency while maintaining high-quality captions. This article serves as a position paper for identifying the motivation, challenges, and principles of AI Flow.