Abstract:Inverse design with physics-based objectives is challenging because it couples high-dimensional geometry with expensive simulations, as exemplified by aerodynamic shape optimization for drag reduction. We revisit inverse design through two canonical solutions, the optimal design point and the optimal design distribution, and relate them to optimization and guided generation. Building on this view, we propose a new training loss for cost predictors and a density-gradient optimization method that improves objectives while preserving plausible shapes. We further unify existing training-free guided generation methods. To address their inability to approximate conditional covariance in high dimensions, we develop a time- and memory-efficient algorithm for approximate covariance estimation. Experiments on a controlled 2D study and high-fidelity 3D aerodynamic benchmarks (car and aircraft), validated by OpenFOAM simulations and miniature wind-tunnel tests with 3D-printed prototypes, demonstrate consistent gains in both optimization and guided generation. Additional offline RL results further support the generality of our approach.
Abstract:Deep learning has demonstrated remarkable capabilities in simulating complex dynamic systems. However, existing methods require known physical properties as supervision or inputs, limiting their applicability under unknown conditions. To explore this challenge, we introduce Cloth Dynamics Grounding (CDG), a novel scenario for unsupervised learning of cloth dynamics from multi-view visual observations. We further propose Cloth Dynamics Splatting (CloDS), an unsupervised dynamic learning framework designed for CDG. CloDS adopts a three-stage pipeline that first performs video-to-geometry grounding and then trains a dynamics model on the grounded meshes. To cope with large non-linear deformations and severe self-occlusions during grounding, we introduce a dual-position opacity modulation that supports bidirectional mapping between 2D observations and 3D geometry via mesh-based Gaussian splatting in video-to-geometry grounding stage. It jointly considers the absolute and relative position of Gaussian components. Comprehensive experimental evaluations demonstrate that CloDS effectively learns cloth dynamics from visual data while maintaining strong generalization capabilities for unseen configurations. Our code is available at https://github.com/whynot-zyl/CloDS. Visualization results are available at https://github.com/whynot-zyl/CloDS_video}.%\footnote{As in this example.
Abstract:Traditional machine learning systems are typically designed for static data distributions, which suffer from catastrophic forgetting when learning from evolving data streams. Class-Incremental Learning (CIL) addresses this challenge by enabling learning systems to continuously learn new classes while preserving prior knowledge. With the rise of pre-trained models (PTMs) such as CLIP, leveraging their strong generalization and semantic alignment capabilities has become a promising direction in CIL. However, existing CLIP-based CIL methods are often scattered across disparate codebases, rely on inconsistent configurations, hindering fair comparisons, reproducibility, and practical adoption. Therefore, we propose C3Box (CLIP-based Class-inCremental learning toolBOX), a modular and comprehensive Python toolbox. C3Box integrates representative traditional CIL methods, ViT-based CIL methods, and state-of-the-art CLIP-based CIL methods into a unified CLIP-based framework. By inheriting the streamlined design of PyCIL, C3Box provides a JSON-based configuration and standardized execution pipeline. This design enables reproducible experimentation with low engineering overhead and makes C3Box a reliable benchmark platform for continual learning research. Designed to be user-friendly, C3Box relies only on widely used open-source libraries and supports major operating systems. The code is available at https://github.com/LAMDA-CL/C3Box.
Abstract:Zero-Shot Anomaly Detection (ZSAD) leverages Vision-Language Models (VLMs) to enable supervision-free industrial inspection. However, existing ZSAD paradigms are constrained by single visual backbones, which struggle to balance global semantic generalization with fine-grained structural discriminability. To bridge this gap, we propose Synergistic Semantic-Visual Prompting (SSVP), that efficiently fuses diverse visual encodings to elevate model's fine-grained perception. Specifically, SSVP introduces the Hierarchical Semantic-Visual Synergy (HSVS) mechanism, which deeply integrates DINOv3's multi-scale structural priors into the CLIP semantic space. Subsequently, the Vision-Conditioned Prompt Generator (VCPG) employs cross-modal attention to guide dynamic prompt generation, enabling linguistic queries to precisely anchor to specific anomaly patterns. Furthermore, to address the discrepancy between global scoring and local evidence, the Visual-Text Anomaly Mapper (VTAM) establishes a dual-gated calibration paradigm. Extensive evaluations on seven industrial benchmarks validate the robustness of our method; SSVP achieves state-of-the-art performance with 93.0\% Image-AUROC and 92.2\% Pixel-AUROC on MVTec-AD, significantly outperforming existing zero-shot approaches.
Abstract:Modular end-to-end (ME2E) autonomous driving paradigms combine modular interpretability with global optimization capability and have demonstrated strong performance. However, existing studies mainly focus on accuracy improvement, while critical system-level factors such as inference latency and energy consumption are often overlooked, resulting in increasingly complex model designs that hinder practical deployment. Prior efforts on model compression and acceleration typically optimize either the software or hardware side in isolation. Software-only optimization cannot fundamentally remove intermediate tensor access and operator scheduling overheads, whereas hardware-only optimization is constrained by model structure and precision. As a result, the real-world benefits of such optimizations are often limited. To address these challenges, this paper proposes a reusable software and hardware co-optimization and closed-loop evaluation framework for ME2E autonomous driving inference. The framework jointly integrates software-level model optimization with hardware-level computation optimization under a unified system-level objective. In addition, a multidimensional evaluation metric is introduced to assess system performance by jointly considering safety, comfort, efficiency, latency, and energy, enabling quantitative comparison of different optimization strategies. Experiments across multiple ME2E autonomous driving stacks show that the proposed framework preserves baseline-level driving performance while significantly reducing inference latency and energy consumption, achieving substantial overall system-level improvements. These results demonstrate that the proposed framework provides practical and actionable guidance for efficient deployment of ME2E autonomous driving systems.
Abstract:As wireless networks progress toward sixthgeneration (6G), understanding the spatial distribution of directional beam coverage becomes increasingly important for beam management and link optimization. Multiple-input multipleoutput (MIMO) beam map provides such spatial awareness, yet accurate construction under sparse measurements remains difficult due to incomplete spatial coverage and strong angular variations. This paper presents a tensor decomposition approach for reconstructing MIMO beam map from limited measurements. By transforming measurements from a Cartesian coordinate system into a polar coordinate system, we uncover a matrix-vector outer-product structure associated with different propagation conditions. Specifically, we mathematically demonstrate that the matrix factor, representing beam-space gain, exhibits an intrinsic Toeplitz structure due to the shift-invariant nature of array responses, and the vector factor captures distance-dependent attenuation. Leveraging these structural priors, we formulate a regularized tensor decomposition problem to jointly reconstruct line-of-sight (LOS), reflection, and obstruction propagation conditions. Simulation results confirm that the proposed method significantly enhances data efficiency, achieving a normalized mean square error (NMSE) reduction of over 20% compared to state-of-the-art baselines, even under sparse sampling regimes.
Abstract:Large language models (LLMs) can achieve strong reasoning performance with sufficient computation, but they do not inherently know how much computation a task requires. We study budgeted inference-time reasoning for multiple tasks under a strict global token constraint and formalize it as a Ordered Stochastic Multiple-Choice Knapsack Problem(OS-MCKP). This perspective highlights a meta-cognitive requirement -- anticipating task difficulty, estimating return over investment (ROI), and allocating computation strategically. We propose ROI-Reasoning, a two-stage framework that endows LLMs with intrinsic, budget-aware rationality. In the first stage, Meta-Cognitive Fine-Tuning teaches models to predict reasoning cost and expected utility before generation, enabling explicit solve-or-skip decisions. Next, Rationality-Aware Reinforcement Learning optimizes sequential decision making under a hard token budget, allowing models to learn long-horizon allocation strategies. Across budgeted mathematical reasoning benchmarks, ROI-Reasoning consistently improves overall score while substantially reducing regret under tight computation budgets.
Abstract:While Multimodal Large Language Models (MLLMs) have demonstrated remarkable proficiency in tasks such as abnormality detection and report generation for anatomical modalities, their capability in functional imaging remains largely unexplored. In this work, we identify and quantify a fundamental functional perception gap: the inability of current vision encoders to decode functional tracer biodistribution independent of morphological priors. Identifying Positron Emission Tomography (PET) as the quintessential modality to investigate this disconnect, we introduce PET-Bench, the first large-scale functional imaging benchmark comprising 52,308 hierarchical QA pairs from 9,732 multi-site, multi-tracer PET studies. Extensive evaluation of 19 state-of-the-art MLLMs reveals a critical safety hazard termed the Chain-of-Thought (CoT) hallucination trap. We observe that standard CoT prompting, widely considered to enhance reasoning, paradoxically decouples linguistic generation from visual evidence in PET, producing clinically fluent but factually ungrounded diagnoses. To resolve this, we propose Atomic Visual Alignment (AVA), a simple fine-tuning strategy that enforces the mastery of low-level functional perception prior to high-level diagnostic reasoning. Our results demonstrate that AVA effectively bridges the perception gap, transforming CoT from a source of hallucination into a robust inference tool and improving diagnostic accuracy by up to 14.83%. Code and data are available at https://github.com/yezanting/PET-Bench.
Abstract:Predicting multiphysics dynamics is computationally expensive and challenging due to the severe coupling of multi-scale, heterogeneous physical processes. While neural surrogates promise a paradigm shift, the field currently suffers from an "illusion of mastery", as repeatedly emphasized in top-tier commentaries: existing evaluations overly rely on simplified, low-dimensional proxies, which fail to expose the models' inherent fragility in realistic regimes. To bridge this critical gap, we present REALM (REalistic AI Learning for Multiphysics), a rigorous benchmarking framework designed to test neural surrogates on challenging, application-driven reactive flows. REALM features 11 high-fidelity datasets spanning from canonical multiphysics problems to complex propulsion and fire safety scenarios, alongside a standardized end-to-end training and evaluation protocol that incorporates multiphysics-aware preprocessing and a robust rollout strategy. Using this framework, we systematically benchmark over a dozen representative surrogate model families, including spectral operators, convolutional models, Transformers, pointwise operators, and graph/mesh networks, and identify three robust trends: (i) a scaling barrier governed jointly by dimensionality, stiffness, and mesh irregularity, leading to rapidly growing rollout errors; (ii) performance primarily controlled by architectural inductive biases rather than parameter count; and (iii) a persistent gap between nominal accuracy metrics and physically trustworthy behavior, where models with high correlations still miss key transient structures and integral quantities. Taken together, REALM exposes the limits of current neural surrogates on realistic multiphysics flows and offers a rigorous testbed to drive the development of next-generation physics-aware architectures.
Abstract:Memory has emerged, and will continue to remain, a core capability of foundation model-based agents. As research on agent memory rapidly expands and attracts unprecedented attention, the field has also become increasingly fragmented. Existing works that fall under the umbrella of agent memory often differ substantially in their motivations, implementations, and evaluation protocols, while the proliferation of loosely defined memory terminologies has further obscured conceptual clarity. Traditional taxonomies such as long/short-term memory have proven insufficient to capture the diversity of contemporary agent memory systems. This work aims to provide an up-to-date landscape of current agent memory research. We begin by clearly delineating the scope of agent memory and distinguishing it from related concepts such as LLM memory, retrieval augmented generation (RAG), and context engineering. We then examine agent memory through the unified lenses of forms, functions, and dynamics. From the perspective of forms, we identify three dominant realizations of agent memory, namely token-level, parametric, and latent memory. From the perspective of functions, we propose a finer-grained taxonomy that distinguishes factual, experiential, and working memory. From the perspective of dynamics, we analyze how memory is formed, evolved, and retrieved over time. To support practical development, we compile a comprehensive summary of memory benchmarks and open-source frameworks. Beyond consolidation, we articulate a forward-looking perspective on emerging research frontiers, including memory automation, reinforcement learning integration, multimodal memory, multi-agent memory, and trustworthiness issues. We hope this survey serves not only as a reference for existing work, but also as a conceptual foundation for rethinking memory as a first-class primitive in the design of future agentic intelligence.