Abstract:This paper presents a non-cooperative source localization approach based on received signal strength (RSS) and 2D environment map, considering both line-of-sight (LOS) and non-line-of-sight (NLOS) conditions. Conventional localization methods, e.g., weighted centroid localization (WCL), may perform bad. This paper proposes a segmented regression approach using 2D maps to estimate source location and propagation environment jointly. By leveraging topological information from the 2D maps, a support vector-assisted algorithm is developed to solve the segmented regression problem, separate the LOS and NLOS measurements, and estimate the location of source. The proposed method demonstrates a good localization performance with an improvement of over 30% in localization rooted mean squared error (RMSE) compared to the baseline methods.
Abstract:Document retrieval techniques form the foundation for the development of large-scale information systems. The prevailing methodology is to construct a bi-encoder and compute the semantic similarity. However, such scalar similarity is difficult to reflect enough information and impedes our comprehension of the retrieval results. In addition, this computational process mainly emphasizes the global semantics and ignores the fine-grained semantic relationship between the query and the complex text in the document. In this paper, we propose a new method called $\textbf{Ge}$neration $\textbf{A}$ugmented $\textbf{R}$etrieval ($\textbf{GeAR}$) that incorporates well-designed fusion and decoding modules. This enables GeAR to generate the relevant text from documents based on the fused representation of the query and the document, thus learning to "focus on" the fine-grained information. Also when used as a retriever, GeAR does not add any computational burden over bi-encoders. To support the training of the new framework, we have introduced a pipeline to efficiently synthesize high-quality data by utilizing large language models. GeAR exhibits competitive retrieval and localization performance across diverse scenarios and datasets. Moreover, the qualitative analysis and the results generated by GeAR provide novel insights into the interpretation of retrieval results. The code, data, and models will be released after completing technical review to facilitate future research.
Abstract:Data-centric methods have shown great potential in understanding and predicting spatiotemporal dynamics, enabling better design and control of the object system. However, pure deep learning models often lack interpretability, fail to obey intrinsic physics, and struggle to cope with the various domains. While geometry-based methods, e.g., graph neural networks (GNNs), have been proposed to further tackle these challenges, they still need to find the implicit physical laws from large datasets and rely excessively on rich labeled data. In this paper, we herein introduce the conservation-informed GNN (CiGNN), an end-to-end explainable learning framework, to learn spatiotemporal dynamics based on limited training data. The network is designed to conform to the general conservation law via symmetry, where conservative and non-conservative information passes over a multiscale space enhanced by a latent temporal marching strategy. The efficacy of our model has been verified in various spatiotemporal systems based on synthetic and real-world datasets, showing superiority over baseline models. Results demonstrate that CiGNN exhibits remarkable accuracy and generalization ability, and is readily applicable to learning for prediction of various spatiotemporal dynamics in a spatial domain with complex geometry.
Abstract:While Large Language Models (LLMs) have demonstrated remarkable capabilities in scientific tasks, existing evaluation frameworks primarily assess their performance using rich contextual inputs, overlooking their ability to generate novel ideas from minimal information. We introduce LiveIdeaBench, a comprehensive benchmark that evaluates LLMs' scientific creativity and divergent thinking capabilities using single-keyword prompts. Drawing from Guilford's creativity theory, our framework employs a dynamic panel of state-of-the-art LLMs to assess generated ideas across four key dimensions: originality, feasibility, fluency, and flexibility. Through extensive experimentation with 20 leading models across 1,180 keywords spanning 18 scientific domains, we reveal that scientific creative ability shows distinct patterns from general intelligence metrics. Notably, our results demonstrate that models like QwQ-32B-preview achieve comparable creative performance to top-tier models like o1-preview, despite significant gaps in their general intelligence scores. These findings highlight the importance of specialized evaluation frameworks for scientific creativity and suggest that the development of creative capabilities in LLMs may follow different trajectories than traditional problem-solving abilities.
Abstract:The emergence of Retrieval-augmented generation (RAG) has alleviated the issues of outdated and hallucinatory content in the generation of large language models (LLMs), yet it still reveals numerous limitations. When a general-purpose LLM serves as the RAG generator, it often suffers from inadequate response informativeness, response robustness, and citation quality. Past approaches to tackle these limitations, either by incorporating additional steps beyond generating responses or optimizing the generator through supervised fine-tuning (SFT), still failed to align with the RAG requirement thoroughly. Consequently, optimizing the RAG generator from multiple preference perspectives while maintaining its end-to-end LLM form remains a challenge. To bridge this gap, we propose Multiple Perspective Preference Alignment for Retrieval-Augmented Generation (PA-RAG), a method for optimizing the generator of RAG systems to align with RAG requirements comprehensively. Specifically, we construct high-quality instruction fine-tuning data and multi-perspective preference data by sampling varied quality responses from the generator across different prompt documents quality scenarios. Subsequently, we optimize the generator using SFT and Direct Preference Optimization (DPO). Extensive experiments conducted on four question-answer datasets across three LLMs demonstrate that PA-RAG can significantly enhance the performance of RAG generators. Our code and datasets are available at https://github.com/wujwyi/PA-RAG.
Abstract:As large language models (LLMs) become increasingly embedded in everyday applications, ensuring their alignment with the diverse preferences of individual users has become a critical challenge. Currently deployed approaches typically assume homogeneous user objectives and rely on single-objective fine-tuning. However, human preferences are inherently heterogeneous, influenced by various unobservable factors, leading to conflicting signals in preference data. Existing solutions addressing this diversity often require costly datasets labelled for specific objectives and involve training multiple reward models or LLM policies, which is computationally expensive and impractical. In this work, we present a novel framework for few-shot steerable alignment, where users' underlying preferences are inferred from a small sample of their choices. To achieve this, we extend the Bradley-Terry-Luce model to handle heterogeneous preferences with unobserved variability factors and propose its practical implementation for reward modelling and LLM fine-tuning. Thanks to our proposed approach of functional parameter-space conditioning, LLMs trained with our framework can be adapted to individual preferences at inference time, generating outputs over a continuum of behavioural modes. We empirically validate the effectiveness of methods, demonstrating their ability to capture and align with diverse human preferences in a data-efficient manner. Our code is made available at: https://github.com/kasia-kobalczyk/few-shot-steerable-alignment.
Abstract:Personalized diffusion models, capable of synthesizing highly realistic images based on a few reference portraits, pose substantial social, ethical, and legal risks by enabling identity replication. Existing defense mechanisms rely on computationally intensive adversarial perturbations tailored to individual images, rendering them impractical for real-world deployment. This study introduces Real-time Identity Defender (RID), a neural network designed to generate adversarial perturbations through a single forward pass, bypassing the need for image-specific optimization. RID achieves unprecedented efficiency, with defense times as low as 0.12 seconds on a single GPU (4,400 times faster than leading methods) and 1.1 seconds per image on a standard Intel i9 CPU, making it suitable for edge devices such as smartphones. Despite its efficiency, RID matches state-of-the-art performance across visual and quantitative benchmarks, effectively mitigating identity replication risks. Our analysis reveals that RID's perturbations mimic the efficacy of traditional defenses while exhibiting properties distinct from natural noise, such as Gaussian perturbations. To enhance robustness, we extend RID into an ensemble framework that integrates multiple pre-trained text-to-image diffusion models, ensuring resilience against black-box attacks and post-processing techniques, including JPEG compression and diffusion-based purification.
Abstract:To develop autonomous agents capable of executing complex, multi-step decision-making tasks as specified by humans in natural language, existing reinforcement learning approaches typically require expensive labeled datasets or access to real-time experimentation. Moreover, conventional methods often face difficulties in generalizing to unseen goals and states, thereby limiting their practical applicability. This paper presents TEDUO, a novel training pipeline for offline language-conditioned policy learning. TEDUO operates on easy-to-obtain, unlabeled datasets and is suited for the so-called in-the-wild evaluation, wherein the agent encounters previously unseen goals and states. To address the challenges posed by such data and evaluation settings, our method leverages the prior knowledge and instruction-following capabilities of large language models (LLMs) to enhance the fidelity of pre-collected offline data and enable flexible generalization to new goals and states. Empirical results demonstrate that the dual role of LLMs in our framework-as data enhancers and generalizers-facilitates both effective and data-efficient learning of generalizable language-conditioned policies.
Abstract:Real-world clinical decision making is a complex process that involves balancing the risks and benefits of treatments. Quality-adjusted lifetime is a composite outcome that combines patient quantity and quality of life, making it an attractive outcome in clinical research. We propose methods for constructing optimal treatment length strategies to maximize this outcome. Existing methods for estimating optimal treatment strategies for survival outcomes cannot be applied to a quality-adjusted lifetime due to induced informative censoring. We propose a weighted estimating equation that adjusts for both confounding and informative censoring. We also propose a nonparametric estimator of the mean counterfactual quality-adjusted lifetime survival curve under a given treatment length strategy, where the weights are estimated using an undersmoothed sieve-based estimator. We show that the estimator is asymptotically linear and provide a data-dependent undersmoothing criterion. We apply our method to obtain the optimal time for percutaneous endoscopic gastrostomy insertion in patients with amyotrophic lateral sclerosis.
Abstract:Object description plays an important role for visually impaired individuals to understand and compare the differences between objects. Recent multimodal large language models (MLLMs) exhibit powerful perceptual abilities and demonstrate impressive potential for generating object-centric captions. However, the descriptions generated by such models may still usually contain a lot of content that is not relevant to the user intent. Under special scenarios, users may only need the details of certain dimensions of an object. In this paper, we propose a training-free captioning refinement pipeline, \textbf{Dimension Tailor}, designed to enhance user-specified details in object descriptions. This pipeline includes three steps: dimension extracting, erasing, and supplementing, which decompose the description into pre-defined dimensions and correspond to user intent. Therefore, it can not only improve the quality of object details but also offer flexibility in including or excluding specific dimensions based on user preferences. We conducted extensive experiments to demonstrate the effectiveness of Dimension Tailor on controllable object descriptions. Notably, the proposed pipeline can consistently improve the performance of the recent MLLMs. The code is currently accessible at the following anonymous link: \url{https://github.com/xin-ran-w/ControllableObjectDescription}.