Abstract:Large language models (LLMs) are proficient in capturing factual knowledge across various domains. However, refining their capabilities on previously seen knowledge or integrating new knowledge from external sources remains a significant challenge. In this work, we propose a novel synthetic knowledge ingestion method called Ski, which leverages fine-grained synthesis, interleaved generation, and assemble augmentation strategies to construct high-quality data representations from raw knowledge sources. We then integrate Ski and its variations with three knowledge injection techniques: Retrieval Augmented Generation (RAG), Supervised Fine-tuning (SFT), and Continual Pre-training (CPT) to inject and refine knowledge in language models. Extensive empirical experiments are conducted on various question-answering tasks spanning finance, biomedicine, and open-generation domains to demonstrate that Ski significantly outperforms baseline methods by facilitating effective knowledge injection. We believe that our work is an important step towards enhancing the factual accuracy of LLM outputs by refining knowledge representation and injection capabilities.
Abstract:Large language models (LLMs) have demonstrated remarkable capabilities; however, the optimization of their prompts has historically prioritized performance metrics at the expense of crucial safety and security considerations. To overcome this shortcoming, we introduce "Survival of the Safest" (SoS), an innovative multi-objective prompt optimization framework that enhances both performance and security in LLMs simultaneously. SoS utilizes an interleaved multi-objective evolution strategy, integrating semantic, feedback, and crossover mutations to effectively traverse the prompt landscape. Differing from the computationally demanding Pareto front methods, SoS provides a scalable solution that expedites optimization in complex, high-dimensional discrete search spaces while keeping computational demands low. Our approach accommodates flexible weighting of objectives and generates a pool of optimized candidates, empowering users to select prompts that optimally meet their specific performance and security needs. Experimental evaluations across diverse benchmark datasets affirm SoS's efficacy in delivering high performance and notably enhancing safety and security compared to single-objective methods. This advancement marks a significant stride towards the deployment of LLM systems that are both high-performing and secure across varied industrial applications
Abstract:Crafting an ideal prompt for Large Language Models (LLMs) is a challenging task that demands significant resources and expert human input. Existing work treats the optimization of prompt instruction and in-context learning examples as distinct problems, leading to sub-optimal prompt performance. This research addresses this limitation by establishing a unified in-context prompt optimization framework, which aims to achieve joint optimization of the prompt instruction and examples. However, formulating such optimization in the discrete and high-dimensional natural language space introduces challenges in terms of convergence and computational efficiency. To overcome these issues, we present PhaseEvo, an efficient automatic prompt optimization framework that combines the generative capability of LLMs with the global search proficiency of evolution algorithms. Our framework features a multi-phase design incorporating innovative LLM-based mutation operators to enhance search efficiency and accelerate convergence. We conduct an extensive evaluation of our approach across 35 benchmark tasks. The results demonstrate that PhaseEvo significantly outperforms the state-of-the-art baseline methods by a large margin whilst maintaining good efficiency.
Abstract:Evaluating the quality and variability of text generated by Large Language Models (LLMs) poses a significant, yet unresolved research challenge. Traditional evaluation methods, such as ROUGE and BERTScore, which measure token similarity, often fail to capture the holistic semantic equivalence. This results in a low correlation with human judgments and intuition, which is especially problematic in high-stakes applications like healthcare and finance where reliability, safety, and robust decision-making are highly critical. This work proposes DCR, an automated framework for evaluating and improving the consistency of LLM-generated texts using a divide-conquer-reasoning approach. Unlike existing LLM-based evaluators that operate at the paragraph level, our method employs a divide-and-conquer evaluator (DCE) that breaks down the paragraph-to-paragraph comparison between two generated responses into individual sentence-to-paragraph comparisons, each evaluated based on predefined criteria. To facilitate this approach, we introduce an automatic metric converter (AMC) that translates the output from DCE into an interpretable numeric score. Beyond the consistency evaluation, we further present a reason-assisted improver (RAI) that leverages the analytical reasons with explanations identified by DCE to generate new responses aimed at reducing these inconsistencies. Through comprehensive and systematic empirical analysis, we show that our approach outperforms state-of-the-art methods by a large margin (e.g., +19.3% and +24.3% on the SummEval dataset) in evaluating the consistency of LLM generation across multiple benchmarks in semantic, factual, and summarization consistency tasks. Our approach also substantially reduces nearly 90% of output inconsistencies, showing promise for effective hallucination mitigation.