Tsinghua University
Abstract:Existing Knowledge Distillation (KD) methods often align feature information between teacher and student by exploring meaningful feature processing and loss functions. However, due to the difference in feature distributions between the teacher and student, the student model may learn incompatible information from the teacher. To address this problem, we propose teacher-guided student Diffusion Self-KD, dubbed as DSKD. Instead of the direct teacher-student alignment, we leverage the teacher classifier to guide the sampling process of denoising student features through a light-weight diffusion model. We then propose a novel locality-sensitive hashing (LSH)-guided feature distillation method between the original and denoised student features. The denoised student features encapsulate teacher knowledge and could be regarded as a teacher role. In this way, our DSKD method could eliminate discrepancies in mapping manners and feature distributions between the teacher and student, while learning meaningful knowledge from the teacher. Experiments on visual recognition tasks demonstrate that DSKD significantly outperforms existing KD methods across various models and datasets. Our code is attached in supplementary material.
Abstract:Telecommunication networks are increasingly expected to operate autonomously while supporting heterogeneous services with diverse and often conflicting intents -- that is, performance objectives, constraints, and requirements specific to each service. However, transforming high-level intents -- such as ultra-low latency, high throughput, or energy efficiency -- into concrete control actions (i.e., low-level actuator commands) remains beyond the capability of existing heuristic approaches. This work introduces an Agentic AI system for intent-driven autonomous networks, structured around three specialized agents. A supervisory interpreter agent, powered by language models, performs both lexical parsing of intents into executable optimization templates and cognitive refinement based on feedback, constraint feasibility, and evolving network conditions. An optimizer agent converts these templates into tractable optimization problems, analyzes trade-offs, and derives preferences across objectives. Lastly, a preference-driven controller agent, based on multi-objective reinforcement learning, leverages these preferences to operate near the Pareto frontier of network performance that best satisfies the original intent. Collectively, these agents enable networks to autonomously interpret, reason over, adapt to, and act upon diverse intents and network conditions in a scalable manner.
Abstract:Reinforcement Learning (RL) has empowered Multimodal Large Language Models (MLLMs) to achieve superior human preference alignment in Image Quality Assessment (IQA). However, existing RL-based IQA models typically rely on coarse-grained global views, failing to capture subtle local degradations in high-resolution scenarios. While emerging "Thinking with Images" paradigms enable multi-scale visual perception via zoom-in mechanisms, their direct adaptation to IQA induces spurious "cropping-implies-degradation" biases and misinterprets natural depth-of-field as artifacts. To address these challenges, we propose Q-Probe, the first agentic IQA framework designed to scale IQA to high resolution via context-aware probing. First, we construct Vista-Bench, a pioneering benchmark tailored for fine-grained local degradation analysis in high-resolution IQA settings. Furthermore, we propose a three-stage training paradigm that progressively aligns the model with human preferences, while simultaneously eliminating causal bias through a novel context-aware cropping strategy. Extensive experiments demonstrate that Q-Probe achieves state-of-the-art performance in high-resolution settings while maintaining superior efficacy across resolution scales.
Abstract:User behavior modeling lies at the heart of personalized applications like recommender systems. With LLM-based agents, user preference representation has evolved from latent embeddings to semantic memory. While existing memory mechanisms show promise in textual dialogues, modeling non-textual behaviors remains challenging, as preferences must be inferred from implicit signals like clicks without ground truth supervision. Current approaches rely on a single unstructured summary, updated through simple overwriting. However, this is suboptimal: users exhibit multi-faceted interests that get conflated, preferences evolve yet naive overwriting causes forgetting, and sparse individual interactions necessitate collaborative signals. We present STEAM (\textit{\textbf{ST}ructured and \textbf{E}volving \textbf{A}gent \textbf{M}emory}), a novel framework that reimagines how agent memory is organized and updated. STEAM decomposes preferences into atomic memory units, each capturing a distinct interest dimension with explicit links to observed behaviors. To exploit collaborative patterns, STEAM organizes similar memories across users into communities and generates prototype memories for signal propagation. The framework further incorporates adaptive evolution mechanisms, including consolidation for refining memories and formation for capturing emerging interests. Experiments on three real-world datasets demonstrate that STEAM substantially outperforms state-of-the-art baselines in recommendation accuracy, simulation fidelity, and diversity.
Abstract:Language models are revolutionizing the biochemistry domain, assisting scientists in drug design and chemical synthesis with high efficiency. Yet current approaches struggle between small language models prone to hallucination and limited knowledge retention, and large cloud-based language models plagued by privacy risks and high inference costs. To bridge this gap, we introduce ChemCRAFT, a novel framework leveraging agentic reinforcement learning to decouple chemical reasoning from knowledge storage. Instead of forcing the model to memorize vast chemical data, our approach empowers the language model to interact with a sandbox for precise information retrieval. This externalization of knowledge allows a locally deployable small model to achieve superior performance with minimal inference costs. To enable small language models for agent-calling ability, we build an agentic trajectory construction pipeline and a comprehensive chemical-agent sandbox. Based on sandbox interactions, we constructed ChemToolDataset, the first large-scale chemical tool trajectory dataset. Simultaneously, we propose SMILES-GRPO to build a dense chemical reward function, promoting the model's ability to call chemical agents. Evaluations across diverse aspects of drug design show that ChemCRAFT outperforms current cloud-based LLMs in molecular structure analysis, molecular optimization, and synthesis pathway prediction, demonstrating that scientific reasoning is not solely an emergent ability of model scale, but a learnable policy of tool orchestration. This work establishes a cost-effective and privacy-preserving paradigm for AI-aided chemistry, opening new avenues for accelerating molecular discovery with locally deployable agents.
Abstract:As LLMs increasingly function as economic agents, the specific mechanisms LLMs use to update their belief with heterogeneous signals remain opaque. We design experiments and develop a Behavioral Kalman Filter framework to quantify how LLM-based agents update expectations, acting as households or firm CEOs, update expectations when presented with individual and aggregate signals. The results from experiments and model estimation reveal four consistent patterns: (1) agents' weighting of priors and signals deviates from unity; (2) both household and firm CEO agents place substantially larger weights on individual signals compared to aggregate signals; (3) we identify a significant and negative interaction between concurrent signals, implying that the presence of multiple information sources diminishes the marginal weight assigned to each individual signal; and (4) expectation formation patterns differ significantly between household and firm CEO agents. Finally, we demonstrate that LoRA fine-tuning mitigates, but does not fully eliminate, behavioral biases in LLM expectation formation.
Abstract:Diffusion Transformers have recently demonstrated remarkable performance in video generation. However, the long input sequences result in high computational latency due to the quadratic complexity of full attention. Various sparse attention mechanisms have been proposed. Training-free sparse attention is constrained by limited sparsity and thus offers modest acceleration, whereas training-based methods can reach much higher sparsity but demand substantial data and computation for training. In this work, we propose SALAD, introducing a lightweight linear attention branch in parallel with the sparse attention. By incorporating an input-dependent gating mechanism to finely balance the two branches, our method attains 90% sparsity and 1.72x inference speedup, while maintaining generation quality comparable to the full attention baseline. Moreover, our finetuning process is highly efficient, requiring only 2,000 video samples and 1,600 training steps with a batch size of 8.
Abstract:High-fidelity parking-lot digital twins provide essential priors for path planning, collision checking, and perception validation in Automated Valet Parking (AVP). Yet robot-oriented reconstruction faces a trilemma: sparse forward-facing views cause weak parallax and ill-posed geometry; dynamic occlusions and extreme lighting hinder stable texture fusion; and neural rendering typically needs expensive offline optimization, violating edge-side streaming constraints. We propose ParkingTwin, a training-free, lightweight system for online streaming 3D reconstruction. First, OSM-prior-driven geometric construction uses OpenStreetMap semantic topology to directly generate a metric-consistent TSDF, replacing blind geometric search with deterministic mapping and avoiding costly optimization. Second, geometry-aware dynamic filtering employs a quad-modal constraint field (normal/height/depth consistency) to reject moving vehicles and transient occlusions in real time. Third, illumination-robust fusion in CIELAB decouples luminance and chromaticity via adaptive L-channel weighting and depth-gradient suppression, reducing seams under abrupt lighting changes. ParkingTwin runs at 30+ FPS on an entry-level GTX 1660. On a 68,000 m^2 real-world dataset, it achieves SSIM 0.87 (+16.0%), delivers about 15x end-to-end speedup, and reduces GPU memory by 83.3% compared with state-of-the-art 3D Gaussian Splatting (3DGS) that typically requires high-end GPUs (RTX 4090D). The system outputs explicit triangle meshes compatible with Unity/Unreal digital-twin pipelines. Project page: https://mihoutao-liu.github.io/ParkingTwin/
Abstract:Large Language Models have demonstrated profound utility in the medical domain. However, their application to autonomous Electronic Health Records~(EHRs) navigation remains constrained by a reliance on curated inputs and simplified retrieval tasks. To bridge the gap between idealized experimental settings and realistic clinical environments, we present AgentEHR. This benchmark challenges agents to execute complex decision-making tasks, such as diagnosis and treatment planning, requiring long-range interactive reasoning directly within raw and high-noise databases. In tackling these tasks, we identify that existing summarization methods inevitably suffer from critical information loss and fractured reasoning continuity. To address this, we propose RetroSum, a novel framework that unifies a retrospective summarization mechanism with an evolving experience strategy. By dynamically re-evaluating interaction history, the retrospective mechanism prevents long-context information loss and ensures unbroken logical coherence. Additionally, the evolving strategy bridges the domain gap by retrieving accumulated experience from a memory bank. Extensive empirical evaluations demonstrate that RetroSum achieves performance gains of up to 29.16% over competitive baselines, while significantly decreasing total interaction errors by up to 92.3%.
Abstract:Reasoning is a fundamental cognitive process underlying inference, problem-solving, and decision-making. While large language models (LLMs) demonstrate strong reasoning capabilities in closed-world settings, they struggle in open-ended and dynamic environments. Agentic reasoning marks a paradigm shift by reframing LLMs as autonomous agents that plan, act, and learn through continual interaction. In this survey, we organize agentic reasoning along three complementary dimensions. First, we characterize environmental dynamics through three layers: foundational agentic reasoning, which establishes core single-agent capabilities including planning, tool use, and search in stable environments; self-evolving agentic reasoning, which studies how agents refine these capabilities through feedback, memory, and adaptation; and collective multi-agent reasoning, which extends intelligence to collaborative settings involving coordination, knowledge sharing, and shared goals. Across these layers, we distinguish in-context reasoning, which scales test-time interaction through structured orchestration, from post-training reasoning, which optimizes behaviors via reinforcement learning and supervised fine-tuning. We further review representative agentic reasoning frameworks across real-world applications and benchmarks, including science, robotics, healthcare, autonomous research, and mathematics. This survey synthesizes agentic reasoning methods into a unified roadmap bridging thought and action, and outlines open challenges and future directions, including personalization, long-horizon interaction, world modeling, scalable multi-agent training, and governance for real-world deployment.