University of Oregon
Abstract:Simulation offers a scalable and low-cost way to enrich vision-language-action (VLA) training, reducing reliance on expensive real-robot demonstrations. However, most sim-real co-training methods rely on supervised fine-tuning (SFT), which treats simulation as a static source of demonstrations and does not exploit large-scale closed-loop interaction. Consequently, real-world gains and generalization are often limited. In this paper, we propose an \underline{\textit{RL}}-based sim-real \underline{\textit{Co}}-training \modify{(RL-Co)} framework that leverages interactive simulation while preserving real-world capabilities. Our method follows a generic two-stage design: we first warm-start the policy with SFT on a mixture of real and simulated demonstrations, then fine-tune it with reinforcement learning in simulation while adding an auxiliary supervised loss on real-world data to anchor the policy and mitigate catastrophic forgetting. We evaluate our framework on four real-world tabletop manipulation tasks using two representative VLA architectures, OpenVLA and $π_{0.5}$, and observe consistent improvements over real-only fine-tuning and SFT-based co-training, including +24% real-world success on OpenVLA and +20% on $π_{0.5}$. Beyond higher success rates, RL co-training yields stronger generalization to unseen task variations and substantially improved real-world data efficiency, providing a practical and scalable pathway for leveraging simulation to enhance real-robot deployment.
Abstract:Reinforcement learning (RL) promises to unlock capabilities beyond imitation learning for Vision-Language-Action (VLA) models, but its requirement for massive real-world interaction prevents direct deployment on physical robots. Recent work attempts to use learned world models as simulators for policy optimization, yet closed-loop imagined rollouts inevitably suffer from hallucination and long-horizon error accumulation. Such errors do not merely degrade visual fidelity; they corrupt the optimization signal, encouraging policies to exploit model inaccuracies rather than genuine task progress. We propose WoVR, a reliable world-model-based reinforcement learning framework for post-training VLA policies. Instead of assuming a faithful world model, WoVR explicitly regulates how RL interacts with imperfect imagined dynamics. It improves rollout stability through a controllable action-conditioned video world model, reshapes imagined interaction to reduce effective error depth via Keyframe-Initialized Rollouts, and maintains policy-simulator alignment through World Model-Policy co-evolution. Extensive experiments on LIBERO benchmarks and real-world robotic manipulation demonstrate that WoVR enables stable long-horizon imagined rollouts and effective policy optimization, improving average LIBERO success from 39.95% to 69.2% (+29.3 points) and real-robot success from 61.7% to 91.7% (+30.0 points). These results show that learned world models can serve as practical simulators for reinforcement learning when hallucination is explicitly controlled.
Abstract:Evaluating image editing models remains challenging due to the coarse granularity and limited interpretability of traditional metrics, which often fail to capture aspects important to human perception and intent. Such metrics frequently reward visually plausible outputs while overlooking controllability, edit localization, and faithfulness to user instructions. In this work, we introduce a fine-grained Multimodal Large Language Model (MLLM)-as-a-Judge framework for image editing that decomposes common evaluation notions into twelve fine-grained interpretable factors spanning image preservation, edit quality, and instruction fidelity. Building on this formulation, we present a new human-validated benchmark that integrates human judgments, MLLM-based evaluations, model outputs, and traditional metrics across diverse image editing tasks. Through extensive human studies, we show that the proposed MLLM judges align closely with human evaluations at a fine granularity, supporting their use as reliable and scalable evaluators. We further demonstrate that traditional image editing metrics are often poor proxies for these factors, failing to distinguish over-edited or semantically imprecise outputs, whereas our judges provide more intuitive and informative assessments in both offline and online settings. Together, this work introduces a benchmark, a principled factorization, and empirical evidence positioning fine-grained MLLM judges as a practical foundation for studying, comparing, and improving image editing approaches.
Abstract:Click-through rate (CTR) prediction is fundamental to online advertising systems. While Deep Learning Recommendation Models (DLRMs) with explicit feature interactions have long dominated this domain, recent advances in generative recommenders have shown promising results in content recommendation. However, adapting these transformer-based architectures to ads CTR prediction still presents unique challenges, including handling post-scoring contextual signals, maintaining offline-online consistency, and scaling to industrial workloads. We present CADET (Context-Conditioned Ads Decoder-Only Transformer), an end-to-end decoder-only transformer for ads CTR prediction deployed at LinkedIn. Our approach introduces several key innovations: (1) a context-conditioned decoding architecture with multi-tower prediction heads that explicitly model post-scoring signals such as ad position, resolving the chicken-and-egg problem between predicted CTR and ranking; (2) a self-gated attention mechanism that stabilizes training by adaptively regulating information flow at both representation and interaction levels; (3) a timestamp-based variant of Rotary Position Embedding (RoPE) that captures temporal relationships across timescales from seconds to months; (4) session masking strategies that prevent the model from learning dependencies on unavailable in-session events, addressing train-serve skew; and (5) production engineering techniques including tensor packing, sequence chunking, and custom Flash Attention kernels that enable efficient training and serving at scale. In online A/B testing, CADET achieves a 11.04\% CTR lift compared to the production LiRank baseline model, a hybrid ensemble of DCNv2 and sequential encoders. The system has been successfully deployed on LinkedIn's advertising platform, serving the main traffic for homefeed sponsored updates.
Abstract:Projections (or dimensionality reduction) methods $P$ aim to map high-dimensional data to typically 2D scatterplots for visual exploration. Inverse projection methods $P^{-1}$ aim to map this 2D space to the data space to support tasks such as data augmentation, classifier analysis, and data imputation. Current $P^{-1}$ methods suffer from a fundamental limitation -- they can only generate a fixed surface-like structure in data space, which poorly covers the richness of this space. We address this by a new method that can `sweep' the data space under user control. Our method works generically for any $P$ technique and dataset, is controlled by two intuitive user-set parameters, and is simple to implement. We demonstrate it by an extensive application involving image manipulation for style transfer.
Abstract:Large Language Model (LLM) agents have shown stunning results in complex tasks, yet they often operate in isolation, failing to learn from past experiences. Existing memory-based methods primarily store raw trajectories, which are often redundant and noise-heavy. This prevents agents from extracting high-level, reusable behavioral patterns that are essential for generalization. In this paper, we propose SkillRL, a framework that bridges the gap between raw experience and policy improvement through automatic skill discovery and recursive evolution. Our approach introduces an experience-based distillation mechanism to build a hierarchical skill library SkillBank, an adaptive retrieval strategy for general and task-specific heuristics, and a recursive evolution mechanism that allows the skill library to co-evolve with the agent's policy during reinforcement learning. These innovations significantly reduce the token footprint while enhancing reasoning utility. Experimental results on ALFWorld, WebShop and seven search-augmented tasks demonstrate that SkillRL achieves state-of-the-art performance, outperforming strong baselines over 15.3% and maintaining robustness as task complexity increases. Code is available at this https://github.com/aiming-lab/SkillRL.
Abstract:Recent Speech Large Language Models~(LLMs) have achieved impressive capabilities in end-to-end speech interaction. However, the prevailing autoregressive paradigm imposes strict serial constraints, limiting generation efficiency and introducing exposure bias. In this paper, we investigate Masked Diffusion Modeling~(MDM) as a non-autoregressive paradigm for speech LLMs and introduce VocalNet-MDM. To adapt MDM for streaming speech interaction, we address two critical challenges: training-inference mismatch and iterative overhead. We propose Hierarchical Block-wise Masking to align training objectives with the progressive masked states encountered during block diffusion decoding, and Iterative Self-Distillation to compress multi-step refinement into fewer steps for low-latency inference. Trained on a limited scale of only 6K hours of speech data, VocalNet-MDM achieves a 3.7$\times$--10$\times$ decoding speedup and reduces first-chunk latency by 34\% compared to AR baselines. It maintains competitive recognition accuracy while achieving state-of-the-art text quality and speech naturalness, demonstrating that MDM is a promising and scalable alternative for low-latency, efficient speech LLMs.
Abstract:Teleoperation inherently relies on the human operator acting as a closed-loop controller to actively compensate for hardware imperfections, including latency, mechanical friction, and lack of explicit force feedback. Standard Behavior Cloning (BC), by mimicking the robot's executed trajectory, fundamentally ignores this compensatory mechanism. In this work, we propose a Dual-State Conditioning framework that shifts the learning objective to "Intent Cloning" (master command). We posit that the Intent-Execution Mismatch, the discrepancy between master command and slave response, is not noise, but a critical signal that physically encodes implicit interaction forces and algorithmically reveals the operator's strategy for overcoming system dynamics. By predicting the master intent, our policy learns to generate a "virtual equilibrium point", effectively realizing implicit impedance control. Furthermore, by explicitly conditioning on the history of this mismatch, the model performs implicit system identification, perceiving tracking errors as external forces to close the control loop. To bridge the temporal gap caused by inference latency, we further formulate the policy as a trajectory inpainter to ensure continuous control. We validate our approach on a sensorless, low-cost bi-manual setup. Empirical results across tasks requiring contact-rich manipulation and dynamic tracking reveal a decisive gap: while standard execution-cloning fails due to the inability to overcome contact stiffness and tracking lag, our mismatch-aware approach achieves robust success. This presents a minimalist behavior cloning framework for low-cost hardware, enabling force perception and dynamic compensation without relying on explicit force sensing. Videos are available on the \href{https://xucj98.github.io/mind-the-gap-page/}{project page}.
Abstract:Online policy learning directly in the physical world is a promising yet challenging direction for embodied intelligence. Unlike simulation, real-world systems cannot be arbitrarily accelerated, cheaply reset, or massively replicated, which makes scalable data collection, heterogeneous deployment, and long-horizon effective training difficult. These challenges suggest that real-world policy learning is not only an algorithmic issue but fundamentally a systems problem. We present USER, a Unified and extensible SystEm for Real-world online policy learning. USER treats physical robots as first-class hardware resources alongside GPUs through a unified hardware abstraction layer, enabling automatic discovery, management, and scheduling of heterogeneous robots. To address cloud-edge communication, USER introduces an adaptive communication plane with tunneling-based networking, distributed data channels for traffic localization, and streaming-multiprocessor-aware weight synchronization to regulate GPU-side overhead. On top of this infrastructure, USER organizes learning as a fully asynchronous framework with a persistent, cache-aware buffer, enabling efficient long-horizon experiments with robust crash recovery and reuse of historical data. In addition, USER provides extensible abstractions for rewards, algorithms, and policies, supporting online imitation or reinforcement learning of CNN/MLP, generative policies, and large vision-language-action (VLA) models within a unified pipeline. Results in both simulation and the real world show that USER enables multi-robot coordination, heterogeneous manipulators, edge-cloud collaboration with large models, and long-running asynchronous training, offering a unified and extensible systems foundation for real-world online policy learning.
Abstract:Large language models (LLMs) are pretrained on corpora containing trillions of tokens and, therefore, inevitably memorize sensitive information. Locate-then-edit methods, as a mainstream paradigm of model editing, offer a promising solution by modifying model parameters without retraining. However, in this work, we reveal a critical vulnerability of this paradigm: the parameter updates inadvertently serve as a side channel, enabling attackers to recover the edited data. We propose a two-stage reverse-engineering attack named \textit{KSTER} (\textbf{K}ey\textbf{S}paceRecons\textbf{T}ruction-then-\textbf{E}ntropy\textbf{R}eduction) that leverages the low-rank structure of these updates. First, we theoretically show that the row space of the update matrix encodes a ``fingerprint" of the edited subjects, enabling accurate subject recovery via spectral analysis. Second, we introduce an entropy-based prompt recovery attack that reconstructs the semantic context of the edit. Extensive experiments on multiple LLMs demonstrate that our attacks can recover edited data with high success rates. Furthermore, we propose \textit{subspace camouflage}, a defense strategy that obfuscates the update fingerprint with semantic decoys. This approach effectively mitigates reconstruction risks without compromising editing utility. Our code is available at https://github.com/reanatom/EditingAtk.git.