Abstract:Cross-domain recommendation (CDR) aims to improve recommendation accuracy in sparse domains by transferring knowledge from data-rich domains. However, existing CDR methods often assume the availability of user-item interaction data across domains, overlooking user privacy concerns. Furthermore, these methods suffer from performance degradation in scenarios with sparse overlapping users, as they typically depend on a large number of fully shared users for effective knowledge transfer. To address these challenges, we propose a Federated Prototype-based Contrastive Learning (CL) method for Privacy-Preserving CDR, named FedPCL-CDR. This approach utilizes non-overlapping user information and prototypes to improve multi-domain performance while protecting user privacy. FedPCL-CDR comprises two modules: local domain (client) learning and global server aggregation. In the local domain, FedPCL-CDR clusters all user data to learn representative prototypes, effectively utilizing non-overlapping user information and addressing the sparse overlapping user issue. It then facilitates knowledge transfer by employing both local and global prototypes returned from the server in a CL manner. Simultaneously, the global server aggregates representative prototypes from local domains to learn both local and global prototypes. The combination of prototypes and federated learning (FL) ensures that sensitive user data remains decentralized, with only prototypes being shared across domains, thereby protecting user privacy. Extensive experiments on four CDR tasks using two real-world datasets demonstrate that FedPCL-CDR outperforms the state-of-the-art baselines.
Abstract:Self-supervised learning (SSL) has recently attracted significant attention in the field of recommender systems. Contrastive learning (CL) stands out as a major SSL paradigm due to its robust ability to generate self-supervised signals. Mainstream graph contrastive learning (GCL)-based methods typically implement CL by creating contrastive views through various data augmentation techniques. Despite these methods are effective, we argue that there still exist several challenges: i) Data augmentation (e.g., discarding edges or adding noise) necessitates additional graph convolution (GCN) or modeling operations, which are highly time-consuming and potentially harm the embedding quality. ii) Existing CL-based methods use traditional CL objectives to capture self-supervised signals. However, few studies have explored obtaining CL objectives from more perspectives and have attempted to fuse the varying signals from these CL objectives to enhance recommendation performance. To overcome these challenges, we propose a High-Order Fusion Graph Contrastive Learning (HFGCL) framework for recommendation. Specifically, we discards the data augmentations and instead high-order information from GCN process to create contrastive views. Additionally, to integrate self-supervised signals from various CL objectives, we propose an advanced CL objective. By ensuring that positive pairs are distanced from negative samples derived from both contrastive views, we effectively fuse self-supervised signals from distinct CL objectives, thereby enhancing the mutual information between positive pairs. Experimental results on three public datasets demonstrate the superior effectiveness of HFGCL compared to the state-of-the-art baselines.
Abstract:Contrastive Learning (CL)-based recommender systems have gained prominence in the context of Heterogeneous Graph (HG) due to their capacity to enhance the consistency of representations across different views. However, existing frameworks often neglect the fact that user-item interactions within HG are governed by diverse latent intents (e.g., brand preferences or demographic characteristics of item audiences), which are pivotal in capturing fine-grained relations. The exploration of these underlying intents, particularly through the lens of meta-paths in HGs, presents us with two principal challenges: i) How to integrate CL with intents; ii) How to mitigate noise from meta-path-driven intents. To address these challenges, we propose an innovative framework termed Intent-guided Heterogeneous Graph Contrastive Learning (IHGCL), which designed to enhance CL-based recommendation by capturing the intents contained within meta-paths. Specifically, the IHGCL framework includes: i) a meta-path-based Dual Contrastive Learning (DCL) approach to effectively integrate intents into the recommendation, constructing intent-intent contrast and intent-interaction contrast; ii) a Bottlenecked AutoEncoder (BAE) that combines mask propagation with the information bottleneck principle to significantly reduce noise perturbations introduced by meta-paths. Empirical evaluations conducted across six distinct datasets demonstrate the superior performance of our IHGCL framework relative to conventional baseline methods. Our model implementation is available at https://github.com/wangyu0627/IHGCL.
Abstract:Deep & Cross Network and its derivative models have become an important paradigm in click-through rate (CTR) prediction due to their effective balance between computational cost and performance. However, these models face four major limitations: (1) while most models claim to capture high-order feature interactions, they often do so implicitly and non-interpretably through deep neural networks (DNN), which limits the trustworthiness of the model's predictions; (2) the performance of existing explicit feature interaction methods is often weaker than that of implicit DNN, undermining their necessity; (3) many models fail to adaptively filter noise while enhancing the order of feature interactions; (4) the fusion methods of most models cannot provide suitable supervision signals for their different interaction methods. To address the identified limitations, this paper proposes the next generation Deep Cross Network (DCNv3) and Shallow & Deep Cross Network (SDCNv3). These models ensure interpretability in feature interaction modeling while exponentially increasing the order of feature interactions to achieve genuine Deep Crossing rather than just Deep & Cross. Additionally, we employ a Self-Mask operation to filter noise and reduce the number of parameters in the cross network by half. In the fusion layer, we use a simple yet effective loss weight calculation method called Tri-BCE to provide appropriate supervision signals. Comprehensive experiments on six datasets demonstrate the effectiveness, efficiency, and interpretability of DCNv3 and SDCNv3. The code, running logs, and detailed hyperparameter configurations are available at: https://anonymous.4open.science/r/DCNv3-E352.
Abstract:Intent modeling has attracted widespread attention in recommender systems. As the core motivation behind user selection of items, intent is crucial for elucidating recommendation results. The current mainstream modeling method is to abstract the intent into unknowable but learnable shared or non-shared parameters. Despite considerable progress, we argue that it still confronts the following challenges: firstly, these methods only capture the coarse-grained aspects of intent, ignoring the fact that user-item interactions will be affected by collective and individual factors (e.g., a user may choose a movie because of its high box office or because of his own unique preferences); secondly, modeling believable intent is severely hampered by implicit feedback, which is incredibly sparse and devoid of true semantics. To address these challenges, we propose a novel recommendation framework designated as Bilateral Intent-guided Graph Collaborative Filtering (BIGCF). Specifically, we take a closer look at user-item interactions from a causal perspective and put forth the concepts of individual intent-which signifies private preferences-and collective intent-which denotes overall awareness. To counter the sparsity of implicit feedback, the feature distributions of users and items are encoded via a Gaussian-based graph generation strategy, and we implement the recommendation process through bilateral intent-guided graph reconstruction re-sampling. Finally, we propose graph contrastive regularization for both interaction and intent spaces to uniformize users, items, intents, and interactions in a self-supervised and non-augmented paradigm. Experimental results on three real-world datasets demonstrate the effectiveness of BIGCF compared with existing solutions.
Abstract:Social recommendation leverages social network to complement user-item interaction data for recommendation task, aiming to mitigate the data sparsity issue in recommender systems. However, existing social recommendation methods encounter the following challenge: both social network and interaction data contain substaintial noise, and the propagation of such noise through Graph Neural Networks (GNNs) not only fails to enhance recommendation performance but may also interfere with the model's normal training. Despite the importance of denoising for social network and interaction data, only a limited number of studies have considered the denoising for social network and all of them overlook that for interaction data, hindering the denoising effect and recommendation performance. Based on this, we propose a novel model called Dual-domain Collaborative Denoising for Social Recommendation ($\textbf{DCDSR}$). DCDSR comprises two primary modules: the structure-level collaborative denoising module and the embedding-space collaborative denoising module. In the structure-level collaborative denoising module, information from interaction domain is first employed to guide social network denoising. Subsequently, the denoised social network is used to supervise the denoising for interaction data. The embedding-space collaborative denoising module devotes to resisting the noise cross-domain diffusion problem through contrastive learning with dual-domain embedding collaborative perturbation. Additionally, a novel contrastive learning strategy, named Anchor-InfoNCE, is introduced to better harness the denoising capability of contrastive learning. Evaluating our model on three real-world datasets verifies that DCDSR has a considerable denoising effect, thus outperforms the state-of-the-art social recommendation methods.
Abstract:Effective feature interaction modeling is critical for enhancing the accuracy of click-through rate (CTR) prediction in industrial recommender systems. Most of the current deep CTR models resort to building complex network architectures to better capture intricate feature interactions or user behaviors. However, we identify two limitations in these models: (1) the samples given to the model are undifferentiated, which may lead the model to learn a larger number of easy samples in a single-minded manner while ignoring a smaller number of hard samples, thus reducing the model's generalization ability; (2) differentiated feature interaction encoders are designed to capture different interactions information but receive consistent supervision signals, thereby limiting the effectiveness of the encoder. To bridge the identified gaps, this paper introduces a novel CTR prediction framework by integrating the plug-and-play Twin Focus (TF) Loss, Sample Selection Embedding Module (SSEM), and Dynamic Fusion Module (DFM), named the Twin Focus Framework for CTR (TF4CTR). Specifically, the framework employs the SSEM at the bottom of the model to differentiate between samples, thereby assigning a more suitable encoder for each sample. Meanwhile, the TF Loss provides tailored supervision signals to both simple and complex encoders. Moreover, the DFM dynamically fuses the feature interaction information captured by the encoders, resulting in more accurate predictions. Experiments on five real-world datasets confirm the effectiveness and compatibility of the framework, demonstrating its capacity to enhance various representative baselines in a model-agnostic manner. To facilitate reproducible research, our open-sourced code and detailed running logs will be made available at: https://github.com/salmon1802/TF4CTR.
Abstract:Heterogeneous Graphs (HGs) can effectively model complex relationships in the real world by multi-type nodes and edges. In recent years, inspired by self-supervised learning, contrastive Heterogeneous Graphs Neural Networks (HGNNs) have shown great potential by utilizing data augmentation and discriminators for downstream tasks. However, data augmentation is still limited due to the discrete and abstract nature of graphs. To tackle the above limitations, we propose a novel \textit{Generative-Contrastive Heterogeneous Graph Neural Network (GC-HGNN)}. Specifically, we first propose a heterogeneous graph generative learning enhanced contrastive paradigm. This paradigm includes: 1) A contrastive view augmentation strategy by using masked autoencoder. 2) Position-aware and semantics-aware positive sample sampling strategy for generate hard negative samples. 3) A hierarchical contrastive learning strategy for capturing local and global information. Furthermore, the hierarchical contrastive learning and sampling strategies aim to constitute an enhanced discriminator under the generative-contrastive perspective. Finally, we compare our model with seventeen baselines on eight real-world datasets. Our model outperforms the latest contrastive and generative baselines on node classification and link prediction tasks. To reproduce our work, we have open-sourced our code at https://github.com/xxx.
Abstract:Cross-domain recommendation (CDR) aims to enhance recommendation accuracy in a target domain with sparse data by leveraging rich information in a source domain, thereby addressing the data-sparsity problem. Some existing CDR methods highlight the advantages of extracting domain-common and domain-specific features to learn comprehensive user and item representations. However, these methods can't effectively disentangle these components as they often rely on simple user-item historical interaction information (such as ratings, clicks, and browsing), neglecting the rich multi-modal features. Additionally, they don't protect user-sensitive data from potential leakage during knowledge transfer between domains. To address these challenges, we propose a Privacy-Preserving Framework with Multi-Modal Data for Cross-Domain Recommendation, called P2M2-CDR. Specifically, we first design a multi-modal disentangled encoder that utilizes multi-modal information to disentangle more informative domain-common and domain-specific embeddings. Furthermore, we introduce a privacy-preserving decoder to mitigate user privacy leakage during knowledge transfer. Local differential privacy (LDP) is utilized to obfuscate the disentangled embeddings before inter-domain exchange, thereby enhancing privacy protection. To ensure both consistency and differentiation among these obfuscated disentangled embeddings, we incorporate contrastive learning-based domain-inter and domain-intra losses. Extensive Experiments conducted on four real-world datasets demonstrate that P2M2-CDR outperforms other state-of-the-art single-domain and cross-domain baselines.
Abstract:Click-through rate (CTR) Prediction is a crucial task in personalized information retrievals, such as industrial recommender systems, online advertising, and web search. Most existing CTR Prediction models utilize explicit feature interactions to overcome the performance bottleneck of implicit feature interactions. Hence, deep CTR models based on parallel structures (e.g., DCN, FinalMLP, xDeepFM) have been proposed to obtain joint information from different semantic spaces. However, these parallel subcomponents lack effective supervisory signals, making it challenging to efficiently capture valuable multi-views feature interaction information in different semantic spaces. To address this issue, we propose a simple yet effective novel CTR model: Contrast-enhanced Through Network for CTR (CETN), so as to ensure the diversity and homogeneity of feature interaction information. Specifically, CETN employs product-based feature interactions and the augmentation (perturbation) concept from contrastive learning to segment different semantic spaces, each with distinct activation functions. This improves diversity in the feature interaction information captured by the model. Additionally, we introduce self-supervised signals and through connection within each semantic space to ensure the homogeneity of the captured feature interaction information. The experiments and research conducted on four real datasets demonstrate that our model consistently outperforms twenty baseline models in terms of AUC and Logloss.