AI Lab, Netease
Abstract:The widespread use of mobile devices has created new challenges for vision systems in safety monitoring, workplace productivity assessment, and attention management. Detecting whether a person is using a phone requires not only object recognition but also an understanding of behavioral context, which involves reasoning about the relationship between faces, hands, and devices under diverse conditions. Existing generic benchmarks do not fully capture such fine-grained human--device interactions. To address this gap, we introduce the FPI-Det, containing 22{,}879 images with synchronized annotations for faces and phones across workplace, education, transportation, and public scenarios. The dataset features extreme scale variation, frequent occlusions, and varied capture conditions. We evaluate representative YOLO and DETR detectors, providing baseline results and an analysis of performance across object sizes, occlusion levels, and environments. Source code and dataset is available at https://github.com/KvCgRv/FPI-Det.
Abstract:Few-shot semantic segmentation (FSS) aims to segment objects of novel categories in the query images given only a few annotated support samples. Existing methods primarily build the image-level correlation between the support target object and the entire query image. However, this correlation contains the hard pixel noise, \textit{i.e.}, irrelevant background objects, that is intractable to trace and suppress, leading to the overfitting of the background. To address the limitation of this correlation, we imitate the biological vision process to identify novel objects in the object-level information. Target identification in the general objects is more valid than in the entire image, especially in the low-data regime. Inspired by this, we design an Object-level Correlation Network (OCNet) by establishing the object-level correlation between the support target object and query general objects, which is mainly composed of the General Object Mining Module (GOMM) and Correlation Construction Module (CCM). Specifically, GOMM constructs the query general object feature by learning saliency and high-level similarity cues, where the general objects include the irrelevant background objects and the target foreground object. Then, CCM establishes the object-level correlation by allocating the target prototypes to match the general object feature. The generated object-level correlation can mine the query target feature and suppress the hard pixel noise for the final prediction. Extensive experiments on PASCAL-${5}^{i}$ and COCO-${20}^{i}$ show that our model achieves the state-of-the-art performance.
Abstract:Path planning in robotics often involves solving continuously valued, high-dimensional problems. Popular informed approaches include graph-based searches, such as A*, and sampling-based methods, such as Informed RRT*, which utilize informed set and anytime strategies to expedite path optimization incrementally. Informed sampling-based planners define informed sets as subsets of the problem domain based on the current best solution cost. However, when no solution is found, these planners re-sample and explore the entire configuration space, which is time-consuming and computationally expensive. This article introduces Multi-Informed Trees (MIT*), a novel planner that constructs estimated informed sets based on prior admissible solution costs before finding the initial solution, thereby accelerating the initial convergence rate. Moreover, MIT* employs an adaptive sampler that dynamically adjusts the sampling strategy based on the exploration process. Furthermore, MIT* utilizes length-related adaptive sparse collision checks to guide lazy reverse search. These features enhance path cost efficiency and computation times while ensuring high success rates in confined scenarios. Through a series of simulations and real-world experiments, it is confirmed that MIT* outperforms existing single-query, sampling-based planners for problems in R^4 to R^16 and has been successfully applied to real-world robot manipulation tasks. A video showcasing our experimental results is available at: https://youtu.be/30RsBIdexTU
Abstract:Efficient motion planning algorithms are essential in robotics. Optimizing essential parameters, such as batch size and nearest neighbor selection in sampling-based methods, can enhance performance in the planning process. However, existing approaches often lack environmental adaptability. Inspired by the method of the deep fuzzy neural networks, this work introduces Learning-based Informed Trees (LIT*), a sampling-based deep fuzzy learning-based planner that dynamically adjusts batch size and nearest neighbor parameters to obstacle distributions in the configuration spaces. By encoding both global and local ratios via valid and invalid states, LIT* differentiates between obstacle-sparse and obstacle-dense regions, leading to lower-cost paths and reduced computation time. Experimental results in high-dimensional spaces demonstrate that LIT* achieves faster convergence and improved solution quality. It outperforms state-of-the-art single-query, sampling-based planners in environments ranging from R^8 to R^14 and is successfully validated on a dual-arm robot manipulation task. A video showcasing our experimental results is available at: https://youtu.be/NrNs9zebWWk
Abstract:Path planning has long been an important and active research area in robotics. To address challenges in high-dimensional motion planning, this study introduces the Force Direction Informed Trees (FDIT*), a sampling-based planner designed to enhance speed and cost-effectiveness in pathfinding. FDIT* builds upon the state-of-the-art informed sampling planner, the Effort Informed Trees (EIT*), by capitalizing on often-overlooked information in invalid vertices. It incorporates principles of physical force, particularly Coulomb's law. This approach proposes the elliptical $k$-nearest neighbors search method, enabling fast convergence navigation and avoiding high solution cost or infeasible paths by exploring more problem-specific search-worthy areas. It demonstrates benefits in search efficiency and cost reduction, particularly in confined, high-dimensional environments. It can be viewed as an extension of nearest neighbors search techniques. Fusing invalid vertex data with physical dynamics facilitates force-direction-based search regions, resulting in an improved convergence rate to the optimum. FDIT* outperforms existing single-query, sampling-based planners on the tested problems in R^4 to R^16 and has been demonstrated on a real-world mobile manipulation task.
Abstract:Optimal path planning requires finding a series of feasible states from the starting point to the goal to optimize objectives. Popular path planning algorithms, such as Effort Informed Trees (EIT*), employ effort heuristics to guide the search. Effective heuristics are accurate and computationally efficient, but achieving both can be challenging due to their conflicting nature. This paper proposes Direction Informed Trees (DIT*), a sampling-based planner that focuses on optimizing the search direction for each edge, resulting in goal bias during exploration. We define edges as generalized vectors and integrate similarity indexes to establish a directional filter that selects the nearest neighbors and estimates direction costs. The estimated direction cost heuristics are utilized in edge evaluation. This strategy allows the exploration to share directional information efficiently. DIT* convergence faster than existing single-query, sampling-based planners on tested problems in R^4 to R^16 and has been demonstrated in real-world environments with various planning tasks. A video showcasing our experimental results is available at: https://youtu.be/2SX6QT2NOek
Abstract:Recent advances in pre-trained vision-language models have demonstrated remarkable zero-shot generalization capabilities. To further enhance these models' adaptability to various downstream tasks, prompt tuning has emerged as a parameter-efficient fine-tuning method. However, despite its efficiency, the generalization ability of prompt remains limited. In contrast, label smoothing (LS) has been widely recognized as an effective regularization technique that prevents models from becoming over-confident and improves their generalization. This inspires us to explore the integration of LS with prompt tuning. However, we have observed that the vanilla LS even weakens the generalization ability of prompt tuning. To address this issue, we propose the Alternating Training-based Label Smoothing (ATLaS) method, which alternately trains with standard one-hot labels and soft labels generated by LS to supervise the prompt tuning. Moreover, we introduce two types of efficient offline soft labels, including Class-wise Soft Labels (CSL) and Instance-wise Soft Labels (ISL), to provide inter-class or instance-class relationships for prompt tuning. The theoretical properties of the proposed ATLaS method are analyzed. Extensive experiments demonstrate that the proposed ATLaS method, combined with CSL and ISL, consistently enhances the generalization performance of prompt tuning. Moreover, the proposed ATLaS method exhibits high compatibility with prevalent prompt tuning methods, enabling seamless integration into existing methods.
Abstract:Recent advances in generative models have inspired the field of recommender systems to explore generative approaches, but most existing research focuses on sequence generation, a paradigm ill-suited for click-through rate (CTR) prediction. CTR models critically depend on a large number of cross-features between the target item and the user to estimate the probability of clicking on the item, and discarding these cross-features will significantly impair model performance. Therefore, to harness the ability of generative models to understand data distributions and thereby alleviate the constraints of traditional discriminative models in label-scarce space, diverging from the item-generation paradigm of sequence generation methods, we propose a novel sample-level generation paradigm specifically designed for the CTR task: a two-stage Discrete Diffusion-Based Generative CTR training framework (DGenCTR). This two-stage framework comprises a diffusion-based generative pre-training stage and a CTR-targeted supervised fine-tuning stage for CTR. Finally, extensive offline experiments and online A/B testing conclusively validate the effectiveness of our framework.
Abstract:With the emergence of e-commerce, the recommendations provided by commercial platforms must adapt to diverse scenarios to accommodate users' varying shopping preferences. Current methods typically use a unified framework to offer personalized recommendations for different scenarios. However, they often employ shared bottom representations, which partially hinders the model's capacity to capture scenario uniqueness. Ideally, users and items should exhibit specific characteristics in different scenarios, prompting the need to learn scenario-specific representations to differentiate scenarios. Yet, variations in user and item interactions across scenarios lead to data sparsity issues, impeding the acquisition of scenario-specific representations. To learn robust scenario-specific representations, we introduce a Global-Distribution Aware Scenario-Specific Variational Representation Learning Framework (GSVR) that can be directly applied to existing multi-scenario methods. Specifically, considering the uncertainty stemming from limited samples, our approach employs a probabilistic model to generate scenario-specific distributions for each user and item in each scenario, estimated through variational inference (VI). Additionally, we introduce the global knowledge-aware multinomial distributions as prior knowledge to regulate the learning of the posterior user and item distributions, ensuring similarities among distributions for users with akin interests and items with similar side information. This mitigates the risk of users or items with fewer records being overwhelmed in sparse scenarios. Extensive experimental results affirm the efficacy of GSVR in assisting existing multi-scenario recommendation methods in learning more robust representations.
Abstract:Traditional recommendation methods rely on correlating the embedding vectors of item IDs to capture implicit collaborative filtering signals to model the user's interest in the target item. Consequently, traditional ID-based methods often encounter data sparsity problems stemming from the sparse nature of ID features. To alleviate the problem of item ID sparsity, recommendation models incorporate multimodal item information to enhance recommendation accuracy. However, existing multimodal recommendation methods typically employ early fusion approaches, which focus primarily on combining text and image features, while neglecting the contextual influence of user behavior sequences. This oversight prevents dynamic adaptation of multimodal interest representations based on behavioral patterns, consequently restricting the model's capacity to effectively capture user multimodal interests. Therefore, this paper proposes the Distribution-Guided Multimodal-Interest Auto-Encoder (DMAE), which achieves the cross fusion of user multimodal interest at the behavioral level.Ultimately, extensive experiments demonstrate the superiority of DMAE.