Department of Computer Engineering, School of Computation, Information and Technology, Technical University of Munich
Abstract:We introduce AffordanceGrasp-R1, a reasoning-driven affordance segmentation framework for robotic grasping that combines a chain-of-thought (CoT) cold-start strategy with reinforcement learning to enhance deduction and spatial grounding. In addition, we redesign the grasping pipeline to be more context-aware by generating grasp candidates from the global scene point cloud and subsequently filtering them using instruction-conditioned affordance masks. Extensive experiments demonstrate that AffordanceGrasp-R1 consistently outperforms state-of-the-art (SOTA) methods on benchmark datasets, and real-world robotic grasping evaluations further validate its robustness and generalization under complex language-conditioned manipulation scenarios.
Abstract:In high-dimensional robotic path planning, traditional sampling-based methods often struggle to efficiently identify both feasible and optimal paths in complex, multi-obstacle environments. This challenge is intensified in robotic manipulators, where the risk of kinematic singularities and self-collisions further complicates motion efficiency and safety. To address these issues, we introduce the Just-in-Time Informed Trees (JIT*) algorithm, an enhancement over Effort Informed Trees (EIT*), designed to improve path planning through two core modules: the Just-in-Time module and the Motion Performance module. The Just-in-Time module includes "Just-in-Time Edge," which dynamically refines edge connectivity, and "Just-in-Time Sample," which adjusts sampling density in bottleneck areas to enable faster initial path discovery. The Motion Performance module balances manipulability and trajectory cost through dynamic switching, optimizing motion control while reducing the risk of singularities. Comparative analysis shows that JIT* consistently outperforms traditional sampling-based planners across $\mathbb{R}^4$ to $\mathbb{R}^{16}$ dimensions. Its effectiveness is further demonstrated in single-arm and dual-arm manipulation tasks, with experimental results available in a video at https://youtu.be/nL1BMHpMR7c.
Abstract:Task decomposition is critical for understanding and learning complex long-horizon manipulation tasks. Especially for tasks involving rich physical interactions, relying solely on visual observations and robot proprioceptive information often fails to reveal the underlying event transitions. This raises the requirement for efficient collection of high-quality multi-modal data as well as robust segmentation method to decompose demonstrations into meaningful modules. Building on the idea of the handheld demonstration device Universal Manipulation Interface (UMI), we introduce TacUMI, a multi-modal data collection system that integrates additionally ViTac sensors, force-torque sensor, and pose tracker into a compact, robot-compatible gripper design, which enables synchronized acquisition of all these modalities during human demonstrations. We then propose a multi-modal segmentation framework that leverages temporal models to detect semantically meaningful event boundaries in sequential manipulations. Evaluation on a challenging cable mounting task shows more than 90 percent segmentation accuracy and highlights a remarkable improvement with more modalities, which validates that TacUMI establishes a practical foundation for both scalable collection and segmentation of multi-modal demonstrations in contact-rich tasks.
Abstract:This paper presents LLM-empowered workflow to support Software Defined Vehicle (SDV) software development, covering the aspects of security-aware system topology design, as well as event-driven decision-making code analysis. For code analysis we adopt event chains model which provides formal foundations to systematic validation of functional safety, taking into account the semantic validity of messages exchanged between key components, including both CAN and Vehicle Signal Specification (VSS). Analysis of security aspects for topology relies on synergy with Model-Driven Engineering (MDE) approach and Object Constraint Language (OCL) rules. Both locally deployable and proprietary solution are taken into account for evaluation within Advanced Driver-Assistance Systems (ADAS)-related scenarios.
Abstract:Grasping is one of the most fundamental challenging capabilities in robotic manipulation, especially in unstructured, cluttered, and semantically diverse environments. Recent researches have increasingly explored language-guided manipulation, where robots not only perceive the scene but also interpret task-relevant natural language instructions. However, existing language-conditioned grasping methods typically rely on shallow fusion strategies, leading to limited semantic grounding and weak alignment between linguistic intent and visual grasp reasoning.In this work, we propose Language-Guided Grasp Detection (LGGD) with a coarse-to-fine learning paradigm for robotic manipulation. LGGD leverages CLIP-based visual and textual embeddings within a hierarchical cross-modal fusion pipeline, progressively injecting linguistic cues into the visual feature reconstruction process. This design enables fine-grained visual-semantic alignment and improves the feasibility of the predicted grasps with respect to task instructions. In addition, we introduce a language-conditioned dynamic convolution head (LDCH) that mixes multiple convolution experts based on sentence-level features, enabling instruction-adaptive coarse mask and grasp predictions. A final refinement module further enhances grasp consistency and robustness in complex scenes.Experiments on the OCID-VLG and Grasp-Anything++ datasets show that LGGD surpasses existing language-guided grasping methods, exhibiting strong generalization to unseen objects and diverse language queries. Moreover, deployment on a real robotic platform demonstrates the practical effectiveness of our approach in executing accurate, instruction-conditioned grasp actions. The code will be released publicly upon acceptance.
Abstract:In Intelligent Transportation Systems (ITS), multi-object tracking is primarily based on frame-based cameras. However, these cameras tend to perform poorly under dim lighting and high-speed motion conditions. Event cameras, characterized by low latency, high dynamic range and high temporal resolution, have considerable potential to mitigate these issues. Compared to frame-based vision, there are far fewer studies on event-based vision. To address this research gap, we introduce an initial pilot dataset tailored for event-based ITS, covering vehicle and pedestrian detection and tracking. We establish a tracking-by-detection benchmark with a specialized feature extractor based on this dataset, achieving excellent performance.
Abstract:There are many bottlenecks that decrease the flexibility of automotive systems, making their long-term maintenance, as well as updates and extensions in later lifecycle phases increasingly difficult, mainly due to long re-engineering, standardization, and compliance procedures, as well as heterogeneity and numerosity of devices and underlying software components involved. In this paper, we explore the potential of Large Language Models (LLMs) when it comes to the automation of tasks and processes that aim to increase the flexibility of automotive systems. Three case studies towards achieving this goal are considered as outcomes of early-stage research: 1) updates, hardware abstraction, and compliance, 2) interface compatibility checking, and 3) architecture modification suggestions. For proof-of-concept implementation, we rely on OpenAI's GPT-4o model.
Abstract:This paper introduces a GenAI-driven approach for automated test case generation, leveraging Large Language Models and Vision-Language Models to translate natural language requirements and system diagrams into structured Gherkin test cases. The methodology integrates Vehicle Signal Specification modeling to standardize vehicle signal definitions, improve compatibility across automotive subsystems, and streamline integration with third-party testing tools. Generated test cases are executed within the digital.auto playground, an open and vendor-neutral environment designed to facilitate rapid validation of software-defined vehicle functionalities. We evaluate our approach using the Child Presence Detection System use case, demonstrating substantial reductions in manual test specification effort and rapid execution of generated tests. Despite significant automation, the generation of test cases and test scripts still requires manual intervention due to current limitations in the GenAI pipeline and constraints of the digital.auto platform.
Abstract:Path planning in robotics often involves solving continuously valued, high-dimensional problems. Popular informed approaches include graph-based searches, such as A*, and sampling-based methods, such as Informed RRT*, which utilize informed set and anytime strategies to expedite path optimization incrementally. Informed sampling-based planners define informed sets as subsets of the problem domain based on the current best solution cost. However, when no solution is found, these planners re-sample and explore the entire configuration space, which is time-consuming and computationally expensive. This article introduces Multi-Informed Trees (MIT*), a novel planner that constructs estimated informed sets based on prior admissible solution costs before finding the initial solution, thereby accelerating the initial convergence rate. Moreover, MIT* employs an adaptive sampler that dynamically adjusts the sampling strategy based on the exploration process. Furthermore, MIT* utilizes length-related adaptive sparse collision checks to guide lazy reverse search. These features enhance path cost efficiency and computation times while ensuring high success rates in confined scenarios. Through a series of simulations and real-world experiments, it is confirmed that MIT* outperforms existing single-query, sampling-based planners for problems in R^4 to R^16 and has been successfully applied to real-world robot manipulation tasks. A video showcasing our experimental results is available at: https://youtu.be/30RsBIdexTU
Abstract:Efficient motion planning algorithms are essential in robotics. Optimizing essential parameters, such as batch size and nearest neighbor selection in sampling-based methods, can enhance performance in the planning process. However, existing approaches often lack environmental adaptability. Inspired by the method of the deep fuzzy neural networks, this work introduces Learning-based Informed Trees (LIT*), a sampling-based deep fuzzy learning-based planner that dynamically adjusts batch size and nearest neighbor parameters to obstacle distributions in the configuration spaces. By encoding both global and local ratios via valid and invalid states, LIT* differentiates between obstacle-sparse and obstacle-dense regions, leading to lower-cost paths and reduced computation time. Experimental results in high-dimensional spaces demonstrate that LIT* achieves faster convergence and improved solution quality. It outperforms state-of-the-art single-query, sampling-based planners in environments ranging from R^8 to R^14 and is successfully validated on a dual-arm robot manipulation task. A video showcasing our experimental results is available at: https://youtu.be/NrNs9zebWWk