Abstract:The automotive industry is transitioning from traditional ECU-based systems to software-defined vehicles. A central role of this revolution is played by containers, lightweight virtualization technologies that enable the flexible consolidation of complex software applications on a common hardware platform. Despite their widespread adoption, the impact of containerization on fundamental real-time metrics such as end-to-end latency, communication jitter, as well as memory and CPU utilization has remained virtually unexplored. This paper presents a microservice architecture for a real-world autonomous driving application where containers isolate each service. Our comprehensive evaluation shows the benefits in terms of end-to-end latency of such a solution even over standard bare-Linux deployments. Specifically, in the case of the presented microservice architecture, the mean end-to-end latency can be improved by 5-8 %. Also, the maximum latencies were significantly reduced using container deployment.
Abstract:We present a prototype of a tool leveraging the synergy of model driven engineering (MDE) and Large Language Models (LLM) for the purpose of software development process automation in the automotive industry. In this approach, the user-provided input is free form textual requirements, which are first translated to Ecore model instance representation using an LLM, which is afterwards checked for consistency using Object Constraint Language (OCL) rules. After successful consistency check, the model instance is fed as input to another LLM for the purpose of code generation. The generated code is evaluated in a simulated environment using CARLA simulator connected to an example centralized vehicle architecture, in an emergency brake scenario.
Abstract:We propose a novel model- and feature-based approach to development of vehicle software systems, where the end architecture is not explicitly defined. Instead, it emerges from an iterative process of search and optimization given certain constraints, requirements and hardware architecture, while retaining the property of single-system illusion, where applications run in a logically uniform environment. One of the key points of the presented approach is the inclusion of modern generative AI, specifically Large Language Models (LLMs), in the loop. With the recent advances in the field, we expect that the LLMs will be able to assist in processing of requirements, generation of formal system models, as well as generation of software deployment specification and test code. The resulting pipeline is automated to a large extent, with feedback being generated at each step.