Abstract:The automotive industry is transitioning from traditional ECU-based systems to software-defined vehicles. A central role of this revolution is played by containers, lightweight virtualization technologies that enable the flexible consolidation of complex software applications on a common hardware platform. Despite their widespread adoption, the impact of containerization on fundamental real-time metrics such as end-to-end latency, communication jitter, as well as memory and CPU utilization has remained virtually unexplored. This paper presents a microservice architecture for a real-world autonomous driving application where containers isolate each service. Our comprehensive evaluation shows the benefits in terms of end-to-end latency of such a solution even over standard bare-Linux deployments. Specifically, in the case of the presented microservice architecture, the mean end-to-end latency can be improved by 5-8 %. Also, the maximum latencies were significantly reduced using container deployment.
Abstract:This paper presents an adaptive online learning framework for systems with uncertain parameters to ensure safety-critical control in non-stationary environments. Our approach consists of two phases. The initial phase is centered on a novel sparse Gaussian process (GP) framework. We first integrate a forgetting factor to refine a variational sparse GP algorithm, thus enhancing its adaptability. Subsequently, the hyperparameters of the Gaussian model are trained with a specially compound kernel, and the Gaussian model's online inferential capability and computational efficiency are strengthened by updating a solitary inducing point derived from new samples, in conjunction with the learned hyperparameters. In the second phase, we propose a safety filter based on high-order control barrier functions (HOCBFs), synergized with the previously trained learning model. By leveraging the compound kernel from the first phase, we effectively address the inherent limitations of GPs in handling high-dimensional problems for real-time applications. The derived controller ensures a rigorous lower bound on the probability of satisfying the safety specification. Finally, the efficacy of our proposed algorithm is demonstrated through real-time obstacle avoidance experiments executed using both a simulation platform and a real-world 7-DOF robot.
Abstract:This paper proposes a LiDAR-based goal-seeking and exploration framework, addressing the efficiency of online obstacle avoidance in unstructured environments populated with static and moving obstacles. This framework addresses two significant challenges associated with traditional dynamic control barrier functions (D-CBFs): their online construction and the diminished real-time performance caused by utilizing multiple D-CBFs. To tackle the first challenge, the framework's perception component begins with clustering point clouds via the DBSCAN algorithm, followed by encapsulating these clusters with the minimum bounding ellipses (MBEs) algorithm to create elliptical representations. By comparing the current state of MBEs with those stored from previous moments, the differentiation between static and dynamic obstacles is realized, and the Kalman filter is utilized to predict the movements of the latter. Such analysis facilitates the D-CBF's online construction for each MBE. To tackle the second challenge, we introduce buffer zones, generating Type-II D-CBFs online for each identified obstacle. Utilizing these buffer zones as activation areas substantially reduces the number of D-CBFs that need to be activated. Upon entering these buffer zones, the system prioritizes safety, autonomously navigating safe paths, and hence referred to as the exploration mode. Exiting these buffer zones triggers the system's transition to goal-seeking mode. We demonstrate that the system's states under this framework achieve safety and asymptotic stabilization. Experimental results in simulated and real-world environments have validated our framework's capability, allowing a LiDAR-equipped mobile robot to efficiently and safely reach the desired location within dynamic environments containing multiple obstacles.