Abstract:Conventional trajectory planning approaches for autonomous vehicles often assume a fixed vehicle model that remains constant regardless of the vehicle's location. This overlooks the critical fact that the tires and the surface are the two force-transmitting partners in vehicle dynamics; while the tires stay with the vehicle, surface conditions vary with location. Recognizing these challenges, this paper presents a novel framework for spatially resolving dynamic constraints in both offline and online planning algorithms applied to autonomous racing. We introduce the GripMap concept, which provides a spatial resolution of vehicle dynamic constraints in the Frenet frame, allowing adaptation to locally varying grip conditions. This enables compensation for location-specific effects, more efficient vehicle behavior, and increased safety, unattainable with spatially invariant vehicle models. The focus is on low storage demand and quick access through perfect hashing. This framework proved advantageous in real-world applications in the presented form. Experiments inspired by autonomous racing demonstrate its effectiveness. In future work, this framework can serve as a foundational layer for developing future interpretable learning algorithms that adjust to varying grip conditions in real-time.
Abstract:The classical g-g diagram, representing the achievable acceleration space for a vehicle, is commonly used as a constraint in trajectory planning and control due to its computational simplicity. To address non-planar road geometries, this concept can be extended to incorporate g-g constraints as a function of vehicle speed and vertical acceleration, commonly referred to as g-g-g-v diagrams. However, the estimation of g-g-g-v diagrams is an open problem. Existing simulation-based approaches struggle to isolate non-transient, open-loop stable states across all combinations of speed and acceleration, while optimization-based methods often require simplified vehicle equations and have potential convergence issues. In this paper, we present a novel, open-source, quasi-steady-state black box simulation approach that applies a virtual inertial force in the longitudinal direction. The method emulates the load conditions associated with a specified longitudinal acceleration while maintaining constant vehicle speed, enabling open-loop steering ramps in a purely QSS manner. Appropriate regulation of the ramp steer rate inherently mitigates transient vehicle dynamics when determining the maximum feasible lateral acceleration. Moreover, treating the vehicle model as a black box eliminates model mismatch issues, allowing the use of high-fidelity or proprietary vehicle dynamics models typically unsuited for optimization approaches. An open-source version of the proposed method is available at: https://github.com/TUM-AVS/GGGVDiagrams
Abstract:Motion planning in uncertain environments like complex urban areas is a key challenge for autonomous vehicles (AVs). The aim of our research is to investigate how AVs can navigate crowded, unpredictable scenarios with multiple pedestrians while maintaining a safe and efficient vehicle behavior. So far, most research has concentrated on static or deterministic traffic participant behavior. This paper introduces a novel algorithm for motion planning in crowded spaces by combining social force principles for simulating realistic pedestrian behavior with a risk-aware motion planner. We evaluate this new algorithm in a 2D simulation environment to rigorously assess AV-pedestrian interactions, demonstrating that our algorithm enables safe, efficient, and adaptive motion planning, particularly in highly crowded urban environments - a first in achieving this level of performance. This study has not taken into consideration real-time constraints and has been shown only in simulation so far. Further studies are needed to investigate the novel algorithm in a complete software stack for AVs on real cars to investigate the entire perception, planning and control pipeline in crowded scenarios. We release the code developed in this research as an open-source resource for further studies and development. It can be accessed at the following link: https://github.com/TUM-AVS/PedestrianAwareMotionPlanning
Abstract:Autonomous vehicles (AVs) must navigate dynamic urban environments where occlusions and perception limitations introduce significant uncertainties. This research builds upon and extends existing approaches in risk-aware motion planning and occlusion tracking to address these challenges. While prior studies have developed individual methods for occlusion tracking and risk assessment, a comprehensive method integrating these techniques has not been fully explored. We, therefore, enhance a phantom agent-centric model by incorporating sequential reasoning to track occluded areas and predict potential hazards. Our model enables realistic scenario representation and context-aware risk evaluation by modeling diverse phantom agents, each with distinct behavior profiles. Simulations demonstrate that the proposed approach improves situational awareness and balances proactive safety with efficient traffic flow. While these results underline the potential of our method, validation in real-world scenarios is necessary to confirm its feasibility and generalizability. By utilizing and advancing established methodologies, this work contributes to safer and more reliable AV planning in complex urban environments. To support further research, our method is available as open-source software at: https://github.com/TUM-AVS/OcclusionAwareMotionPlanning
Abstract:This article proposes a roadmap to address the current challenges in small-scale testbeds for Connected and Automated Vehicles (CAVs) and robot swarms. The roadmap is a joint effort of participants in the workshop "1st Workshop on Small-Scale Testbeds for Connected and Automated Vehicles and Robot Swarms," held on June 2 at the IEEE Intelligent Vehicles Symposium (IV) 2024 in Jeju, South Korea. The roadmap contains three parts: 1) enhancing accessibility and diversity, especially for underrepresented communities, 2) sharing best practices for the development and maintenance of testbeds, and 3) connecting testbeds through an abstraction layer to support collaboration. The workshop features eight invited speakers, four contributed papers [1]-[4], and a presentation of a survey paper on testbeds [5]. The survey paper provides an online comparative table of more than 25 testbeds, available at https://bassamlab.github.io/testbeds-survey. The workshop's own website is available at https://cpm-remote.lrt.unibwmuenchen.de/iv24-workshop.
Abstract:Drift vehicle control offers valuable insights to support safe autonomous driving in extreme conditions, which hinges on tracking a particular path while maintaining the vehicle states near the drift equilibrium points (DEP). However, conventional tracking methods are not adaptable for drift vehicles due to their opposite steering angle and yaw rate. In this paper, we propose an adaptive path tracking (APT) control method to dynamically adjust drift states to follow the reference path, improving the commonly utilized predictive path tracking methods with released computation burden. Furthermore, existing control strategies necessitate a precise system model to calculate the DEP, which can be more intractable due to the highly nonlinear drift dynamics and sensitive vehicle parameters. To tackle this problem, an adaptive learning-based model predictive control (ALMPC) strategy is proposed based on the APT method, where an upper-level Bayesian optimization is employed to learn the DEP and APT control law to instruct a lower-level MPC drift controller. This hierarchical system architecture can also resolve the inherent control conflict between path tracking and drifting by separating these objectives into different layers. The ALMPC strategy is verified on the Matlab-Carsim platform, and simulation results demonstrate its effectiveness in controlling the drift vehicle to follow a clothoid-based reference path even with the misidentified road friction parameter.
Abstract:Online planning and execution of minimum-time maneuvers on three-dimensional (3D) circuits is an open challenge in autonomous vehicle racing. In this paper, we present an artificial race driver (ARD) to learn the vehicle dynamics, plan and execute minimum-time maneuvers on a 3D track. ARD integrates a novel kineto-dynamical (KD) vehicle model for trajectory planning with economic nonlinear model predictive control (E-NMPC). We use a high-fidelity vehicle simulator (VS) to compare the closed-loop ARD results with a minimum-lap-time optimal control problem (MLT-VS), solved offline with the same VS. Our ARD sets lap times close to the MLT-VS, and the new KD model outperforms a literature benchmark. Finally, we study the vehicle trajectories, to assess the re-planning capabilities of ARD under execution errors. A video with the main results is available as supplementary material.
Abstract:Large Language Models (LLMs) can capture nuanced contextual relationships, reasoning, and complex problem-solving. By leveraging their ability to process and interpret large-scale information, LLMs have shown potential to address domain-specific challenges, including those in autonomous driving systems. This paper proposes a novel framework that leverages LLMs for risk-aware analysis of generated driving scenarios. We hypothesize that LLMs can effectively evaluate whether driving scenarios generated by autonomous driving testing simulators are safety-critical. To validate this hypothesis, we conducted an empirical evaluation to assess the effectiveness of LLMs in performing this task. This framework will also provide feedback to generate the new safety-critical scenario by using adversarial method to modify existing non-critical scenarios and test their effectiveness in validating motion planning algorithms. Code and scenarios are available at: https://github.com/yuangao-tum/Riskaware-Scenario-analyse
Abstract:In recent years, different approaches for motion planning of autonomous vehicles have been proposed that can handle complex traffic situations. However, these approaches are rarely compared on the same set of benchmarks. To address this issue, we present the results of a large-scale motion planning competition for autonomous vehicles based on the CommonRoad benchmark suite. The benchmark scenarios contain highway and urban environments featuring various types of traffic participants, such as passengers, cars, buses, etc. The solutions are evaluated considering efficiency, safety, comfort, and compliance with a selection of traffic rules. This report summarizes the main results of the competition.
Abstract:We present a novel autonomous driving framework, DualAD, designed to imitate human reasoning during driving. DualAD comprises two layers: a rule-based motion planner at the bottom layer that handles routine driving tasks requiring minimal reasoning, and an upper layer featuring a rule-based text encoder that converts driving scenarios from absolute states into text description. This text is then processed by a large language model (LLM) to make driving decisions. The upper layer intervenes in the bottom layer's decisions when potential danger is detected, mimicking human reasoning in critical situations. Closed-loop experiments demonstrate that DualAD, using a zero-shot pre-trained model, significantly outperforms rule-based motion planners that lack reasoning abilities. Our experiments also highlight the effectiveness of the text encoder, which considerably enhances the model's scenario understanding. Additionally, the integrated DualAD model improves with stronger LLMs, indicating the framework's potential for further enhancement. We make code and benchmarks publicly available.