Department of Information Technology, Uppsala University, Uppsala, Sweden
Abstract:Video generation models (VGMs) have received extensive attention recently and serve as promising candidates for general-purpose large vision models. While they can only generate short videos each time, existing methods achieve long video generation by iteratively calling the VGMs, using the last-frame output as the condition for the next-round generation. However, the last frame only contains short-term fine-grained information about the scene, resulting in inconsistency in the long horizon. To address this, we propose an Omni World modeL (Owl-1) to produce long-term coherent and comprehensive conditions for consistent long video generation. As videos are observations of the underlying evolving world, we propose to model the long-term developments in a latent space and use VGMs to film them into videos. Specifically, we represent the world with a latent state variable which can be decoded into explicit video observations. These observations serve as a basis for anticipating temporal dynamics which in turn update the state variable. The interaction between evolving dynamics and persistent state enhances the diversity and consistency of the long videos. Extensive experiments show that Owl-1 achieves comparable performance with SOTA methods on VBench-I2V and VBench-Long, validating its ability to generate high-quality video observations. Code: https://github.com/huang-yh/Owl.
Abstract:The construction of loss functions presents a major challenge in data-driven modeling involving weak-form operators in PDEs and gradient flows, particularly due to the need to select test functions appropriately. We address this challenge by introducing self-test loss functions, which employ test functions that depend on the unknown parameters, specifically for cases where the operator depends linearly on the unknowns. The proposed self-test loss function conserves energy for gradient flows and coincides with the expected log-likelihood ratio for stochastic differential equations. Importantly, it is quadratic, facilitating theoretical analysis of identifiability and well-posedness of the inverse problem, while also leading to efficient parametric or nonparametric regression algorithms. It is computationally simple, requiring only low-order derivatives or even being entirely derivative-free, and numerical experiments demonstrate its robustness against noisy and discrete data.
Abstract:Graph Transformers (GTs) have demonstrated remarkable performance in incorporating various graph structure information, e.g., long-range structural dependency, into graph representation learning. However, self-attention -- the core module of GTs -- preserves only low-frequency signals on graph features, retaining only homophilic patterns that capture similar features among the connected nodes. Consequently, it has insufficient capacity in modeling complex node label patterns, such as the opposite of homophilic patterns -- heterophilic patterns. Some improved GTs deal with the problem by learning polynomial filters or performing self-attention over the first-order graph spectrum. However, these GTs either ignore rich information contained in the whole spectrum or neglect higher-order spectrum information, resulting in limited flexibility and frequency response in their spectral filters. To tackle these challenges, we propose a novel GT network, namely Graph Fourier Kolmogorov-Arnold Transformers (GrokFormer), to go beyond the self-attention in GTs. GrokFormer leverages learnable activation functions in order-$K$ graph spectrum through Fourier series modeling to i) learn eigenvalue-targeted filter functions producing learnable base that can capture a broad range of frequency signals flexibly, and ii) extract first- and higher-order graph spectral information adaptively. In doing so, GrokFormer can effectively capture intricate patterns hidden across different orders and levels of frequency signals, learning expressive, order-and-frequency-adaptive graph representations. Comprehensive experiments conducted on 10 node classification datasets across various domains, scales, and levels of graph heterophily, as well as 5 graph classification datasets, demonstrate that GrokFormer outperforms state-of-the-art GTs and other advanced graph neural networks.
Abstract:In this paper, we introduce DINO-X, which is a unified object-centric vision model developed by IDEA Research with the best open-world object detection performance to date. DINO-X employs the same Transformer-based encoder-decoder architecture as Grounding DINO 1.5 to pursue an object-level representation for open-world object understanding. To make long-tailed object detection easy, DINO-X extends its input options to support text prompt, visual prompt, and customized prompt. With such flexible prompt options, we develop a universal object prompt to support prompt-free open-world detection, making it possible to detect anything in an image without requiring users to provide any prompt. To enhance the model's core grounding capability, we have constructed a large-scale dataset with over 100 million high-quality grounding samples, referred to as Grounding-100M, for advancing the model's open-vocabulary detection performance. Pre-training on such a large-scale grounding dataset leads to a foundational object-level representation, which enables DINO-X to integrate multiple perception heads to simultaneously support multiple object perception and understanding tasks, including detection, segmentation, pose estimation, object captioning, object-based QA, etc. Experimental results demonstrate the superior performance of DINO-X. Specifically, the DINO-X Pro model achieves 56.0 AP, 59.8 AP, and 52.4 AP on the COCO, LVIS-minival, and LVIS-val zero-shot object detection benchmarks, respectively. Notably, it scores 63.3 AP and 56.5 AP on the rare classes of LVIS-minival and LVIS-val benchmarks, both improving the previous SOTA performance by 5.8 AP. Such a result underscores its significantly improved capacity for recognizing long-tailed objects.
Abstract:Cone-beam computed tomography (CBCT) typically requires hundreds of X-ray projections, which raises concerns about radiation exposure. While sparse-view reconstruction reduces the exposure by using fewer projections, it struggles to achieve satisfactory image quality. To address this challenge, this article introduces a novel sparse-view CBCT reconstruction method, which empowers the neural field with human tissue regularization. Our approach, termed tissue-guided neural tomography (TNT), is motivated by the distinct intensity differences between bone and soft tissue in CBCT. Intuitively, separating these components may aid the learning process of the neural field. More precisely, TNT comprises a heterogeneous quadruple network and the corresponding training strategy. The network represents the intensity field as a combination of soft and hard tissue components, along with their respective textures. We train the network with guidance from estimated tissue projections, enabling efficient learning of the desired patterns for the network heads. Extensive experiments demonstrate that the proposed method significantly improves the sparse-view CBCT reconstruction with a limited number of projections ranging from 10 to 60. Our method achieves comparable reconstruction quality with fewer projections and faster convergence compared to state-of-the-art neural rendering based methods.
Abstract:Early and accurate diagnosis of brain tumors is crucial for improving patient survival rates. However, the detection and classification of brain tumors are challenging due to their diverse types and complex morphological characteristics. This study investigates the application of pre-trained models for brain tumor classification, with a particular focus on deploying the Mamba model. We fine-tuned several mainstream transfer learning models and applied them to the multi-class classification of brain tumors. By comparing these models to those trained from scratch, we demonstrated the significant advantages of transfer learning, especially in the medical imaging field, where annotated data is often limited. Notably, we introduced the Vision Mamba (Vim), a novel network architecture, and applied it for the first time in brain tumor classification, achieving exceptional classification accuracy. Experimental results indicate that the Vim model achieved 100% classification accuracy on an independent test set, emphasizing its potential for tumor classification tasks. These findings underscore the effectiveness of transfer learning in brain tumor classification and reveal that, compared to existing state-of-the-art models, the Vim model is lightweight, efficient, and highly accurate, offering a new perspective for clinical applications. Furthermore, the framework proposed in this study for brain tumor classification, based on transfer learning and the Vision Mamba model, is broadly applicable to other medical imaging classification problems.
Abstract:The emergence of 6th generation (6G) mobile networks brings new challenges in supporting high-mobility communications, particularly in addressing the issue of channel aging. While existing channel prediction methods offer improved accuracy at the expense of increased computational complexity, limiting their practical application in mobile networks. To address these challenges, we present LinFormer, an innovative channel prediction framework based on a scalable, all-linear, encoder-only Transformer model. Our approach, inspired by natural language processing (NLP) models such as BERT, adapts an encoder-only architecture specifically for channel prediction tasks. We propose replacing the computationally intensive attention mechanism commonly used in Transformers with a time-aware multi-layer perceptron (TMLP), significantly reducing computational demands. The inherent time awareness of TMLP module makes it particularly suitable for channel prediction tasks. We enhance LinFormer's training process by employing a weighted mean squared error loss (WMSELoss) function and data augmentation techniques, leveraging larger, readily available communication datasets. Our approach achieves a substantial reduction in computational complexity while maintaining high prediction accuracy, making it more suitable for deployment in cost-effective base stations (BS). Comprehensive experiments using both simulated and measured data demonstrate that LinFormer outperforms existing methods across various mobility scenarios, offering a promising solution for future wireless communication systems.
Abstract:Recent studies suggest large language models (LLMs) can exhibit human-like reasoning, aligning with human behavior in economic experiments, surveys, and political discourse. This has led many to propose that LLMs can be used as surrogates for humans in social science research. However, LLMs differ fundamentally from humans, relying on probabilistic patterns, absent the embodied experiences or survival objectives that shape human cognition. We assess the reasoning depth of LLMs using the 11-20 money request game. Almost all advanced approaches fail to replicate human behavior distributions across many models, except in one case involving fine-tuning using a substantial amount of human behavior data. Causes of failure are diverse, relating to input language, roles, and safeguarding. These results caution against using LLMs to study human behaviors or as human surrogates.
Abstract:Most knowledge distillation (KD) methodologies predominantly focus on teacher-student pairs with similar architectures, such as both being convolutional neural networks (CNNs). However, the potential and flexibility of KD can be greatly improved by expanding it to novel Cross-Architecture KD (CAKD), where the knowledge of homogeneous and heterogeneous teachers can be transferred flexibly to a given student. The primary challenge in CAKD lies in the substantial feature gaps between heterogeneous models, originating from the distinction of their inherent inductive biases and module functions. To this end, we introduce an assistant model as a bridge to facilitate smooth feature knowledge transfer between heterogeneous teachers and students. More importantly, within our proposed design principle, the assistant model combines the advantages of cross-architecture inductive biases and module functions by merging convolution and attention modules derived from both student and teacher module functions. Furthermore, we observe that heterogeneous features exhibit diverse spatial distributions in CAKD, hindering the effectiveness of conventional pixel-wise mean squared error (MSE) loss. Therefore, we leverage a spatial-agnostic InfoNCE loss to align features after spatial smoothing, thereby improving the feature alignments in CAKD. Our proposed method is evaluated across some homogeneous model pairs and arbitrary heterogeneous combinations of CNNs, ViTs, and MLPs, achieving state-of-the-art performance for distilled models with a maximum gain of 11.47% on CIFAR-100 and 3.67% on ImageNet-1K. Our code and models will be released.
Abstract:Graph Anomaly Detection (GAD) is crucial for identifying abnormal entities within networks, garnering significant attention across various fields. Traditional unsupervised methods, which decode encoded latent representations of unlabeled data with a reconstruction focus, often fail to capture critical discriminative content, leading to suboptimal anomaly detection. To address these challenges, we present a Diffusion-based Graph Anomaly Detector (DiffGAD). At the heart of DiffGAD is a novel latent space learning paradigm, meticulously designed to enhance its proficiency by guiding it with discriminative content. This innovative approach leverages diffusion sampling to infuse the latent space with discriminative content and introduces a content-preservation mechanism that retains valuable information across different scales, significantly improving its adeptness at identifying anomalies with limited time and space complexity. Our comprehensive evaluation of DiffGAD, conducted on six real-world and large-scale datasets with various metrics, demonstrated its exceptional performance.