Abstract:Text-Video Retrieval (TVR) aims to align relevant video content with natural language queries. To date, most state-of-the-art TVR methods learn image-to-video transfer learning based on large-scale pre-trained visionlanguage models (e.g., CLIP). However, fully fine-tuning these pre-trained models for TVR incurs prohibitively expensive computation costs. To this end, we propose to conduct efficient text-video Retrieval with a sparse-andcorrelated AdaPter (RAP), i.e., fine-tuning the pre-trained model with a few parameterized layers. To accommodate the text-video scenario, we equip our RAP with two indispensable characteristics: temporal sparsity and correlation. Specifically, we propose a low-rank modulation module to refine the per-image features from the frozen CLIP backbone, which accentuates salient frames within the video features while alleviating temporal redundancy. Besides, we introduce an asynchronous self-attention mechanism that first selects the top responsive visual patches and augments the correlation modeling between them with learnable temporal and patch offsets. Extensive experiments on four TVR datasets demonstrate that RAP achieves superior or comparable performance compared to the fully fine-tuned counterpart and other parameter-efficient fine-tuning methods.
Abstract:Video anomaly understanding (VAU) aims to automatically comprehend unusual occurrences in videos, thereby enabling various applications such as traffic surveillance and industrial manufacturing. While existing VAU benchmarks primarily concentrate on anomaly detection and localization, our focus is on more practicality, prompting us to raise the following crucial questions: "what anomaly occurred?", "why did it happen?", and "how severe is this abnormal event?". In pursuit of these answers, we present a comprehensive benchmark for Causation Understanding of Video Anomaly (CUVA). Specifically, each instance of the proposed benchmark involves three sets of human annotations to indicate the "what", "why" and "how" of an anomaly, including 1) anomaly type, start and end times, and event descriptions, 2) natural language explanations for the cause of an anomaly, and 3) free text reflecting the effect of the abnormality. In addition, we also introduce MMEval, a novel evaluation metric designed to better align with human preferences for CUVA, facilitating the measurement of existing LLMs in comprehending the underlying cause and corresponding effect of video anomalies. Finally, we propose a novel prompt-based method that can serve as a baseline approach for the challenging CUVA. We conduct extensive experiments to show the superiority of our evaluation metric and the prompt-based approach. Our code and dataset are available at https://github.com/fesvhtr/CUVA.
Abstract:Coded Aperture Snapshot Spectral Imaging (CASSI) system has great advantages over traditional methods in dynamically acquiring Hyper-Spectral Image (HSI), but there are the following problems. 1) Traditional mask relies on random patterns or analytical design, both of which limit the performance improvement of CASSI. 2) Existing high-quality reconstruction algorithms are slow in reconstruction and can only reconstruct scene information offline. To address the above two problems, this paper designs the AMDC-CASSI system, introducing RGB camera with CASSI based on Adaptive-Mask as multimodal input to improve the reconstruction quality. The existing SOTA reconstruction schemes are based on transformer, but the operation of self-attention pulls down the operation efficiency of the network. In order to improve the inference speed of the reconstruction network, this paper proposes An MLP Architecture for Adaptive-Mask-based Dual-Camera (MLP-AMDC) to replace the transformer structure of the network. Numerous experiments have shown that MLP performs no less well than transformer-based structures for HSI reconstruction, while MLP greatly improves the network inference speed and has less number of parameters and operations, our method has a 8 db improvement over SOTA and at least a 5-fold improvement in reconstruction speed. (https://github.com/caizeyu1992/MLP-AMDC.)
Abstract:Domain adaptation (DA) aims to transfer knowledge from a fully labeled source to a scarcely labeled or totally unlabeled target under domain shift. Recently, semi-supervised learning-based (SSL) techniques that leverage pseudo labeling have been increasingly used in DA. Despite the competitive performance, these pseudo labeling methods rely heavily on the source domain to generate pseudo labels for the target domain and therefore still suffer considerably from source data bias. Moreover, class distribution bias in the target domain is also often ignored in the pseudo label generation and thus leading to further deterioration of performance. In this paper, we propose GeT that learns a non-bias target embedding distribution with high quality pseudo labels. Specifically, we formulate an online target generative classifier to induce the target distribution into distinctive Gaussian components weighted by their class priors to mitigate source data bias and enhance target class discriminability. We further propose a structure similarity regularization framework to alleviate target class distribution bias and further improve target class discriminability. Experimental results show that our proposed GeT is effective and achieves consistent improvements under various DA settings with and without class distribution bias. Our code is available at: https://lulusindazc.github.io/getproject/.
Abstract:Recent advances in Scene Graph Generation (SGG) typically model the relationships among entities utilizing box-level features from pre-defined detectors. We argue that an overlooked problem in SGG is the coarse-grained interactions between boxes, which inadequately capture contextual semantics for relationship modeling, practically limiting the development of the field. In this paper, we take the initiative to explore and propose a generic paradigm termed Superpixel-based Interaction Learning (SIL) to remedy coarse-grained interactions at the box level. It allows us to model fine-grained interactions at the superpixel level in SGG. Specifically, (i) we treat a scene as a set of points and cluster them into superpixels representing sub-regions of the scene. (ii) We explore intra-entity and cross-entity interactions among the superpixels to enrich fine-grained interactions between entities at an earlier stage. Extensive experiments on two challenging benchmarks (Visual Genome and Open Image V6) prove that our SIL enables fine-grained interaction at the superpixel level above previous box-level methods, and significantly outperforms previous state-of-the-art methods across all metrics. More encouragingly, the proposed method can be applied to boost the performance of existing box-level approaches in a plug-and-play fashion. In particular, SIL brings an average improvement of 2.0% mR (even up to 3.4%) of baselines for the PredCls task on Visual Genome, which facilitates its integration into any existing box-level method.
Abstract:Dynamic scene graphs generated from video clips could help enhance the semantic visual understanding in a wide range of challenging tasks such as environmental perception, autonomous navigation, and task planning of self-driving vehicles and mobile robots. In the process of temporal and spatial modeling during dynamic scene graph generation, it is particularly intractable to learn time-variant relations in dynamic scene graphs among frames. In this paper, we propose a Time-variant Relation-aware TRansformer (TR$^2$), which aims to model the temporal change of relations in dynamic scene graphs. Explicitly, we leverage the difference of text embeddings of prompted sentences about relation labels as the supervision signal for relations. In this way, cross-modality feature guidance is realized for the learning of time-variant relations. Implicitly, we design a relation feature fusion module with a transformer and an additional message token that describes the difference between adjacent frames. Extensive experiments on the Action Genome dataset prove that our TR$^2$ can effectively model the time-variant relations. TR$^2$ significantly outperforms previous state-of-the-art methods under two different settings by 2.1% and 2.6% respectively.
Abstract:We propose a new general model called IPNN - Indeterminate Probability Neural Network, which combines neural network and probability theory together. In the classical probability theory, the calculation of probability is based on the occurrence of events, which is hardly used in current neural networks. In this paper, we propose a new general probability theory, which is an extension of classical probability theory, and makes classical probability theory a special case to our theory. Besides, for our proposed neural network framework, the output of neural network is defined as probability events, and based on the statistical analysis of these events, the inference model for classification task is deduced. IPNN shows new property: It can perform unsupervised clustering while doing classification. Besides, IPNN is capable of making very large classification with very small neural network, e.g. model with 100 output nodes can classify 10 billion categories. Theoretical advantages are reflected in experimental results.
Abstract:Video-Text Pre-training (VTP) aims to learn transferable representations for various downstream tasks from large-scale web videos. To date, almost all existing VTP methods are limited to retrieval-based downstream tasks, e.g., video retrieval, whereas their transfer potentials on localization-based tasks, e.g., temporal grounding, are under-explored. In this paper, we experimentally analyze and demonstrate the incompatibility of current VTP methods with localization tasks, and propose a novel Localization-oriented Video-Text Pre-training framework, dubbed as LocVTP. Specifically, we perform the fine-grained contrastive alignment as a complement to the coarse-grained one by a clip-word correspondence discovery scheme. To further enhance the temporal reasoning ability of the learned feature, we propose a context projection head and a temporal aware contrastive loss to perceive the contextual relationships. Extensive experiments on four downstream tasks across six datasets demonstrate that our LocVTP achieves state-of-the-art performance on both retrieval-based and localization-based tasks. Furthermore, we conduct comprehensive ablation studies and thorough analyses to explore the optimum model designs and training strategies.
Abstract:Recent works on unsupervised domain adaptation (UDA) focus on the selection of good pseudo-labels as surrogates for the missing labels in the target data. However, source domain bias that deteriorates the pseudo-labels can still exist since the shared network of the source and target domains are typically used for the pseudo-label selections. The suboptimal feature space source-to-target domain alignment can also result in unsatisfactory performance. In this paper, we propose CA-UDA to improve the quality of the pseudo-labels and UDA results with optimal assignment, a pseudo-label refinement strategy and class-aware domain alignment. We use an auxiliary network to mitigate the source domain bias for pseudo-label refinement. Our intuition is that the underlying semantics in the target domain can be fully exploited to help refine the pseudo-labels that are inferred from the source features under domain shift. Furthermore, our optimal assignment can optimally align features in the source-to-target domains and our class-aware domain alignment can simultaneously close the domain gap while preserving the classification decision boundaries. Extensive experiments on several benchmark datasets show that our method can achieve state-of-the-art performance in the image classification task.
Abstract:Graph convolutional networks (GCNs) are widely adopted in skeleton-based action recognition due to their powerful ability to model data topology. We argue that the performance of recent proposed skeleton-based action recognition methods is limited by the following factors. First, the predefined graph structures are shared throughout the network, lacking the flexibility and capacity to model the multi-grain semantic information. Second, the relations among the global joints are not fully exploited by the graph local convolution, which may lose the implicit joint relevance. For instance, actions such as running and waving are performed by the co-movement of body parts and joints, e.g., legs and arms, however, they are located far away in physical connection. Inspired by the recent attention mechanism, we propose a multi-grain contextual focus module, termed MCF, to capture the action associated relation information from the body joints and parts. As a result, more explainable representations for different skeleton action sequences can be obtained by MCF. In this study, we follow the common practice that the dense sample strategy of the input skeleton sequences is adopted and this brings much redundancy since number of instances has nothing to do with actions. To reduce the redundancy, a temporal discrimination focus module, termed TDF, is developed to capture the local sensitive points of the temporal dynamics. MCF and TDF are integrated into the standard GCN network to form a unified architecture, named STF-Net. It is noted that STF-Net provides the capability to capture robust movement patterns from these skeleton topology structures, based on multi-grain context aggregation and temporal dependency. Extensive experimental results show that our STF-Net significantly achieves state-of-the-art results on three challenging benchmarks NTU RGB+D 60, NTU RGB+D 120, and Kinetics-skeleton.