Abstract:Time series forecasting plays a critical role in various real-world applications, including energy consumption prediction, disease transmission monitoring, and weather forecasting. Although substantial progress has been made in time series forecasting, most existing methods rely on a centralized training paradigm, where large amounts of data are collected from distributed devices (e.g., sensors, wearables) to a central cloud server. However, this paradigm has overloaded communication networks and raised privacy concerns. Federated learning, a popular privacy-preserving technique, enables collaborative model training across distributed data sources. However, directly applying federated learning to time series forecasting often yields suboptimal results, as time series data generated by different devices are inherently heterogeneous. In this paper, we propose a novel framework, Fed-TREND, to address data heterogeneity by generating informative synthetic data as auxiliary knowledge carriers. Specifically, Fed-TREND generates two types of synthetic data. The first type of synthetic data captures the representative distribution information from clients' uploaded model updates and enhances clients' local training consensus. The second kind of synthetic data extracts long-term influence insights from global model update trajectories and is used to refine the global model after aggregation. Fed-TREND is compatible with most time series forecasting models and can be seamlessly integrated into existing federated learning frameworks to improve prediction performance. Extensive experiments on eight datasets, using several federated learning baselines and four popular time series forecasting models, demonstrate the effectiveness and generalizability of Fed-TREND.
Abstract:In the era of large foundation models, data has become a crucial component for building high-performance AI systems. As the demand for high-quality and large-scale data continues to rise, data copyright protection is attracting increasing attention. In this work, we explore the problem of data watermarking for sequential recommender systems, where a watermark is embedded into the target dataset and can be detected in models trained on that dataset. We address two specific challenges: dataset watermarking, which protects the ownership of the entire dataset, and user watermarking, which safeguards the data of individual users. We systematically define these problems and present a method named DWRS to address them. Our approach involves randomly selecting unpopular items to create a watermark sequence, which is then inserted into normal users' interaction sequences. Extensive experiments on five representative sequential recommendation models and three benchmark datasets demonstrate the effectiveness of DWRS in protecting data copyright while preserving model utility.
Abstract:In recent years, with the significant evolution of multi-modal large models, many recommender researchers realized the potential of multi-modal information for user interest modeling. In industry, a wide-used modeling architecture is a cascading paradigm: (1) first pre-training a multi-modal model to provide omnipotent representations for downstream services; (2) The downstream recommendation model takes the multi-modal representation as additional input to fit real user-item behaviours. Although such paradigm achieves remarkable improvements, however, there still exist two problems that limit model performance: (1) Representation Unmatching: The pre-trained multi-modal model is always supervised by the classic NLP/CV tasks, while the recommendation models are supervised by real user-item interaction. As a result, the two fundamentally different tasks' goals were relatively separate, and there was a lack of consistent objective on their representations; (2) Representation Unlearning: The generated multi-modal representations are always stored in cache store and serve as extra fixed input of recommendation model, thus could not be updated by recommendation model gradient, further unfriendly for downstream training. Inspired by the two difficulties challenges in downstream tasks usage, we introduce a quantitative multi-modal framework to customize the specialized and trainable multi-modal information for different downstream models.
Abstract:Federated sequential recommendation (FedSeqRec) has gained growing attention due to its ability to protect user privacy. Unfortunately, the performance of FedSeqRec is still unsatisfactory because the models used in FedSeqRec have to be lightweight to accommodate communication bandwidth and clients' on-device computational resource constraints. Recently, large language models (LLMs) have exhibited strong transferable and generalized language understanding abilities and therefore, in the NLP area, many downstream tasks now utilize LLMs as a service to achieve superior performance without constructing complex models. Inspired by this successful practice, we propose a generic FedSeqRec framework, FELLAS, which aims to enhance FedSeqRec by utilizing LLMs as an external service. Specifically, FELLAS employs an LLM server to provide both item-level and sequence-level representation assistance. The item-level representation service is queried by the central server to enrich the original ID-based item embedding with textual information, while the sequence-level representation service is accessed by each client. However, invoking the sequence-level representation service requires clients to send sequences to the external LLM server. To safeguard privacy, we implement dx-privacy satisfied sequence perturbation, which protects clients' sensitive data with guarantees. Additionally, a contrastive learning-based method is designed to transfer knowledge from the noisy sequence representation to clients' sequential recommendation models. Furthermore, to empirically validate the privacy protection capability of FELLAS, we propose two interacted item inference attacks. Extensive experiments conducted on three datasets with two widely used sequential recommendation models demonstrate the effectiveness and privacy-preserving capability of FELLAS.
Abstract:Dynamic and interactive traffic scenarios pose significant challenges for autonomous driving systems. Reinforcement learning (RL) offers a promising approach by enabling the exploration of driving policies beyond the constraints of pre-collected datasets and predefined conditions, particularly in complex environments. However, a critical challenge lies in effectively extracting spatial and temporal features from sequences of high-dimensional, multi-modal observations while minimizing the accumulation of errors over time. Additionally, efficiently guiding large-scale RL models to converge on optimal driving policies without frequent failures during the training process remains tricky. We propose an end-to-end model-based RL algorithm named Ramble to address these issues. Ramble processes multi-view RGB images and LiDAR point clouds into low-dimensional latent features to capture the context of traffic scenarios at each time step. A transformer-based architecture is then employed to model temporal dependencies and predict future states. By learning a dynamics model of the environment, Ramble can foresee upcoming traffic events and make more informed, strategic decisions. Our implementation demonstrates that prior experience in feature extraction and decision-making plays a pivotal role in accelerating the convergence of RL models toward optimal driving policies. Ramble achieves state-of-the-art performance regarding route completion rate and driving score on the CARLA Leaderboard 2.0, showcasing its effectiveness in managing complex and dynamic traffic situations.
Abstract:Federated recommender systems (FedRecs) have emerged as a popular research direction for protecting users' privacy in on-device recommendations. In FedRecs, users keep their data locally and only contribute their local collaborative information by uploading model parameters to a central server. While this rigid framework protects users' raw data during training, it severely compromises the recommendation model's performance due to the following reasons: (1) Due to the power law distribution nature of user behavior data, individual users have few data points to train a recommendation model, resulting in uploaded model updates that may be far from optimal; (2) As each user's uploaded parameters are learned from local data, which lacks global collaborative information, relying solely on parameter aggregation methods such as FedAvg to fuse global collaborative information may be suboptimal. To bridge this performance gap, we propose a novel federated recommendation framework, PDC-FRS. Specifically, we design a privacy-preserving data contribution mechanism that allows users to share their data with a differential privacy guarantee. Based on the shared but perturbed data, an auxiliary model is trained in parallel with the original federated recommendation process. This auxiliary model enhances FedRec by augmenting each user's local dataset and integrating global collaborative information. To demonstrate the effectiveness of PDC-FRS, we conduct extensive experiments on two widely used recommendation datasets. The empirical results showcase the superiority of PDC-FRS compared to baseline methods.
Abstract:In the field of multi-modal language models, the majority of methods are built on an architecture similar to LLaVA. These models use a single-layer ViT feature as a visual prompt, directly feeding it into the language models alongside textual tokens. However, when dealing with long sequences of visual signals or inputs such as videos, the self-attention mechanism of language models can lead to significant computational overhead. Additionally, using single-layer ViT features makes it challenging for large language models to perceive visual signals fully. This paper proposes an efficient multi-modal language model to minimize computational costs while enabling the model to perceive visual signals as comprehensively as possible. Our method primarily includes: (1) employing cross-attention to image-text interaction similar to Flamingo. (2) utilize hierarchical ViT features. (3) introduce the Mixture of Experts (MoE) mechanism to enhance model effectiveness. Our model achieves competitive scores on public multi-modal benchmarks and performs well in tasks such as image captioning and video captioning.
Abstract:Sequential recommender systems have made significant progress. Recently, due to increasing concerns about user data privacy, some researchers have implemented federated learning for sequential recommendation, a.k.a., Federated Sequential Recommender Systems (FedSeqRecs), in which a public sequential recommender model is shared and frequently transmitted between a central server and clients to achieve collaborative learning. Although these solutions mitigate user privacy to some extent, they present two significant limitations that affect their practical usability: (1) They require a globally shared sequential recommendation model. However, in real-world scenarios, the recommendation model constitutes a critical intellectual property for platform and service providers. Therefore, service providers may be reluctant to disclose their meticulously developed models. (2) The communication costs are high as they correlate with the number of model parameters. This becomes particularly problematic as the current FedSeqRec will be inapplicable when sequential recommendation marches into a large language model era. To overcome the above challenges, this paper proposes a parameter transmission-free federated sequential recommendation framework (PTF-FSR), which ensures both model and data privacy protection to meet the privacy needs of service providers and system users alike. Furthermore, since PTF-FSR only transmits prediction results under privacy protection, which are independent of model sizes, this new federated learning architecture can accommodate more complex and larger sequential recommendation models. Extensive experiments conducted on three widely used recommendation datasets, employing various sequential recommendation models from both ID-based and ID-free paradigms, demonstrate the effectiveness and generalization capability of our proposed framework.
Abstract:In sampling tasks, it is common for target distributions to be known up to a normalizing constant. However, in many situations, evaluating even the unnormalized distribution can be costly or infeasible. This issue arises in scenarios such as sampling from the Bayesian posterior for tall datasets and the `doubly-intractable' distributions. In this paper, we begin by observing that seemingly different Markov chain Monte Carlo (MCMC) algorithms, such as the exchange algorithm, PoissonMH, and TunaMH, can be unified under a simple common procedure. We then extend this procedure into a novel framework that allows the use of auxiliary variables in both the proposal and acceptance-rejection steps. We develop the theory of the new framework, applying it to existing algorithms to simplify and extend their results. Several new algorithms emerge from this framework, with improved performance demonstrated on both synthetic and real datasets.
Abstract:From a perspective of feature matching, optical flow estimation for event cameras involves identifying event correspondences by comparing feature similarity across accompanying event frames. In this work, we introduces an effective and robust high-dimensional (HD) feature descriptor for event frames, utilizing Vector Symbolic Architectures (VSA). The topological similarity among neighboring variables within VSA contributes to the enhanced representation similarity of feature descriptors for flow-matching points, while its structured symbolic representation capacity facilitates feature fusion from both event polarities and multiple spatial scales. Based on this HD feature descriptor, we propose a novel feature matching framework for event-based optical flow, encompassing both model-based (VSA-Flow) and self-supervised learning (VSA-SM) methods. In VSA-Flow, accurate optical flow estimation validates the effectiveness of HD feature descriptors. In VSA-SM, a novel similarity maximization method based on the HD feature descriptor is proposed to learn optical flow in a self-supervised way from events alone, eliminating the need for auxiliary grayscale images. Evaluation results demonstrate that our VSA-based method achieves superior accuracy in comparison to both model-based and self-supervised learning methods on the DSEC benchmark, while remains competitive among both methods on the MVSEC benchmark. This contribution marks a significant advancement in event-based optical flow within the feature matching methodology.