Abstract:In our urban life, long distance coaches supply a convenient yet economic approach to the transportation of the public. One notable problem is to discover the abnormal stop of the coaches due to the important reason, i.e., illegal pick up on the way which possibly endangers the safety of passengers. It has become a pressing issue to detect the coach abnormal stop with low-quality GPS. In this paper, we propose an unsupervised method that helps transportation managers to efficiently discover the Abnormal Stop Detection (ASD) for long distance coaches. Concretely, our method converts the ASD problem into an unsupervised clustering framework in which both the normal stop and the abnormal one are decomposed. Firstly, we propose a stop duration model for the low frequency GPS based on the assumption that a coach changes speed approximately in a linear approach. Secondly, we strip the abnormal stops from the normal stop points by the low rank assumption. The proposed method is conceptually simple yet efficient, by leveraging low rank assumption to handle normal stop points, our approach enables domain experts to discover the ASD for coaches, from a case study motivated by traffic managers. Datset and code are publicly available at: https://github.com/pangjunbiao/IPPs.
Abstract:State-of-the-art sequential recommendation models heavily rely on transformer's attention mechanism. However, the quadratic computational and memory complexities of self attention have limited its scalability for modeling users' long range behaviour sequences. To address this problem, we propose ELASTIC, an Efficient Linear Attention for SequenTial Interest Compression, requiring only linear time complexity and decoupling model capacity from computational cost. Specifically, ELASTIC introduces a fixed length interest experts with linear dispatcher attention mechanism which compresses the long-term behaviour sequences to a significantly more compact representation which reduces up to 90% GPU memory usage with x2.7 inference speed up. The proposed linear dispatcher attention mechanism significantly reduces the quadratic complexity and makes the model feasible for adequately modeling extremely long sequences. Moreover, in order to retain the capacity for modeling various user interests, ELASTIC initializes a vast learnable interest memory bank and sparsely retrieves compressed user's interests from the memory with a negligible computational overhead. The proposed interest memory retrieval technique significantly expands the cardinality of available interest space while keeping the same computational cost, thereby striking a trade-off between recommendation accuracy and efficiency. To validate the effectiveness of our proposed ELASTIC, we conduct extensive experiments on various public datasets and compare it with several strong sequential recommenders. Experimental results demonstrate that ELASTIC consistently outperforms baselines by a significant margin and also highlight the computational efficiency of ELASTIC when modeling long sequences. We will make our implementation code publicly available.
Abstract:Live streaming services are becoming increasingly popular due to real-time interactions and entertainment. Viewers can chat and send comments or virtual gifts to express their preferences for the streamers. Accurately modeling the gifting interaction not only enhances users' experience but also increases streamers' revenue. Previous studies on live streaming gifting prediction treat this task as a conventional recommendation problem, and model users' preferences using categorical data and observed historical behaviors. However, it is challenging to precisely describe the real-time content changes in live streaming using limited categorical information. Moreover, due to the sparsity of gifting behaviors, capturing the preferences and intentions of users is quite difficult. In this work, we propose MMBee based on real-time Multi-Modal Fusion and Behaviour Expansion to address these issues. Specifically, we first present a Multi-modal Fusion Module with Learnable Query (MFQ) to perceive the dynamic content of streaming segments and process complex multi-modal interactions, including images, text comments and speech. To alleviate the sparsity issue of gifting behaviors, we present a novel Graph-guided Interest Expansion (GIE) approach that learns both user and streamer representations on large-scale gifting graphs with multi-modal attributes. Comprehensive experiment results show that MMBee achieves significant performance improvements on both public datasets and Kuaishou real-world streaming datasets and the effectiveness has been further validated through online A/B experiments. MMBee has been deployed and is serving hundreds of millions of users at Kuaishou.
Abstract:Sharpness-Aware Minimization (SAM) has emerged as a promising approach for effectively reducing the generalization error. However, SAM incurs twice the computational cost compared to base optimizer (e.g., SGD). We propose Asymptotic Unbiased Sampling with respect to iterations to accelerate SAM (AUSAM), which maintains the model's generalization capacity while significantly enhancing computational efficiency. Concretely, we probabilistically sample a subset of data points beneficial for SAM optimization based on a theoretically guaranteed criterion, i.e., the Gradient Norm of each Sample (GNS). We further approximate the GNS by the difference in loss values before and after perturbation in SAM. As a plug-and-play, architecture-agnostic method, our approach consistently accelerates SAM across a range of tasks and networks, i.e., classification, human pose estimation and network quantization. On CIFAR10/100 and Tiny-ImageNet, AUSAM achieves results comparable to SAM while providing a speedup of over 70%. Compared to recent dynamic data pruning methods, AUSAM is better suited for SAM and excels in maintaining performance. Additionally, AUSAM accelerates optimization in human pose estimation and model quantization without sacrificing performance, demonstrating its broad practicality.
Abstract:Parsing Computer-Aided Design (CAD) drawings is a fundamental step for CAD revision, semantic-based management, and the generation of 3D prototypes in both the architecture and engineering industries. Labeling symbols from a CAD drawing is a challenging yet notorious task from a practical point of view. In this work, we propose to label and spot symbols from CAD images that are converted from CAD drawings. The advantage of spotting symbols from CAD images lies in the low requirement of labelers and the low-cost annotation. However, pixel-wise spotting symbols from CAD images is challenging work. We propose a pixel-wise point location via Progressive Gaussian Kernels (PGK) to balance between training efficiency and location accuracy. Besides, we introduce a local offset to the heatmap-based point location method. Based on the keypoints detection, we propose a symbol grouping method to redraw the rectangle symbols in CAD images. We have released a dataset containing CAD images of equipment rooms from telecommunication industrial CAD drawings. Extensive experiments on this real-world dataset show that the proposed method has good generalization ability.
Abstract:In recent years, live streaming platforms have gained immense popularity as they allow users to broadcast their videos and interact in real-time with hosts and peers. Due to the dynamic changes of live content, accurate recommendation models are crucial for enhancing user experience. However, most previous works treat the live as a whole item and explore the Click-through-Rate (CTR) prediction framework on item-level, neglecting that the dynamic changes that occur even within the same live room. In this paper, we proposed a ContentCTR model that leverages multimodal transformer for frame-level CTR prediction. First, we present an end-to-end framework that can make full use of multimodal information, including visual frames, audio, and comments, to identify the most attractive live frames. Second, to prevent the model from collapsing into a mediocre solution, a novel pairwise loss function with first-order difference constraints is proposed to utilize the contrastive information existing in the highlight and non-highlight frames. Additionally, we design a temporal text-video alignment module based on Dynamic Time Warping to eliminate noise caused by the ambiguity and non-sequential alignment of visual and textual information. We conduct extensive experiments on both real-world scenarios and public datasets, and our ContentCTR model outperforms traditional recommendation models in capturing real-time content changes. Moreover, we deploy the proposed method on our company platform, and the results of online A/B testing further validate its practical significance.
Abstract:Video understanding is an important task in short video business platforms and it has a wide application in video recommendation and classification. Most of the existing video understanding works only focus on the information that appeared within the video content, including the video frames, audio and text. However, introducing common sense knowledge from the external Knowledge Graph (KG) dataset is essential for video understanding when referring to the content which is less relevant to the video. Owing to the lack of video knowledge graph dataset, the work which integrates video understanding and KG is rare. In this paper, we propose a heterogeneous dataset that contains the multi-modal video entity and fruitful common sense relations. This dataset also provides multiple novel video inference tasks like the Video-Relation-Tag (VRT) and Video-Relation-Video (VRV) tasks. Furthermore, based on this dataset, we propose an end-to-end model that jointly optimizes the video understanding objective with knowledge graph embedding, which can not only better inject factual knowledge into video understanding but also generate effective multi-modal entity embedding for KG. Comprehensive experiments indicate that combining video understanding embedding with factual knowledge benefits the content-based video retrieval performance. Moreover, it also helps the model generate better knowledge graph embedding which outperforms traditional KGE-based methods on VRT and VRV tasks with at least 42.36% and 17.73% improvement in HITS@10.