Abstract:In our urban life, long distance coaches supply a convenient yet economic approach to the transportation of the public. One notable problem is to discover the abnormal stop of the coaches due to the important reason, i.e., illegal pick up on the way which possibly endangers the safety of passengers. It has become a pressing issue to detect the coach abnormal stop with low-quality GPS. In this paper, we propose an unsupervised method that helps transportation managers to efficiently discover the Abnormal Stop Detection (ASD) for long distance coaches. Concretely, our method converts the ASD problem into an unsupervised clustering framework in which both the normal stop and the abnormal one are decomposed. Firstly, we propose a stop duration model for the low frequency GPS based on the assumption that a coach changes speed approximately in a linear approach. Secondly, we strip the abnormal stops from the normal stop points by the low rank assumption. The proposed method is conceptually simple yet efficient, by leveraging low rank assumption to handle normal stop points, our approach enables domain experts to discover the ASD for coaches, from a case study motivated by traffic managers. Datset and code are publicly available at: https://github.com/pangjunbiao/IPPs.
Abstract:In computer vision, traditional ensemble learning methods exhibit either a low training efficiency or the limited performance to enhance the reliability of deep neural networks. In this paper, we propose a lightweight, loss-function-free, and architecture-agnostic ensemble learning by the Decorrelating Structure via Adapters (DSA) for various visual tasks. Concretely, the proposed DSA leverages the structure-diverse adapters to decorrelate multiple prediction heads without any tailed regularization or loss. This allows DSA to be easily extensible to architecture-agnostic networks for a range of computer vision tasks. Importantly, the theoretically analysis shows that the proposed DSA has a lower bias and variance than that of the single head based method (which is adopted by most of the state of art approaches). Consequently, the DSA makes deep networks reliable and robust for the various real-world challenges, \textit{e.g.}, data corruption, and label noises. Extensive experiments combining the proposed method with FreeMatch achieved the accuracy improvements of 5.35% on CIFAR-10 dataset with 40 labeled data and 0.71% on CIFAR-100 dataset with 400 labeled data. Besides, combining the proposed method with DualPose achieved the improvements in the Percentage of Correct Keypoints (PCK) by 2.08% on the Sniffing dataset with 100 data (30 labeled data), 5.2% on the FLIC dataset with 100 data (including 50 labeled data), and 2.35% on the LSP dataset with 200 data (100 labeled data).
Abstract:Sharpness-Aware Minimization (SAM) has emerged as a promising approach for effectively reducing the generalization error. However, SAM incurs twice the computational cost compared to base optimizer (e.g., SGD). We propose Asymptotic Unbiased Sampling with respect to iterations to accelerate SAM (AUSAM), which maintains the model's generalization capacity while significantly enhancing computational efficiency. Concretely, we probabilistically sample a subset of data points beneficial for SAM optimization based on a theoretically guaranteed criterion, i.e., the Gradient Norm of each Sample (GNS). We further approximate the GNS by the difference in loss values before and after perturbation in SAM. As a plug-and-play, architecture-agnostic method, our approach consistently accelerates SAM across a range of tasks and networks, i.e., classification, human pose estimation and network quantization. On CIFAR10/100 and Tiny-ImageNet, AUSAM achieves results comparable to SAM while providing a speedup of over 70%. Compared to recent dynamic data pruning methods, AUSAM is better suited for SAM and excels in maintaining performance. Additionally, AUSAM accelerates optimization in human pose estimation and model quantization without sacrificing performance, demonstrating its broad practicality.
Abstract:Crack detection has become an indispensable, interesting yet challenging task in the computer vision community. Specially, pavement cracks have a highly complex spatial structure, a low contrasting background and a weak spatial continuity, posing a significant challenge to an effective crack detection method. In this paper, we address these problems from a view that utilizes contexts of the cracks and propose an end-to-end deep learning method to model the context information flow. To precisely localize crack from an image, it is critical to effectively extract and aggregate multi-granularity context, including the fine-grained local context around the cracks (in spatial-level) and the coarse-grained semantics (in segment-level). Concretely, in Convolutional Neural Network (CNN), low-level features extracted by the shallow layers represent the local information, while the deep layers extract the semantic features. Additionally, a second main insight in this work is that the semantic context should be an guidance to local context feature. By the above insights, the proposed method we first apply the dilated convolution as the backbone feature extractor to model local context, then we build a context guidance module to leverage semantic context to guide local feature extraction at multiple stages. To handle label alignment between stages, we apply the Multiple Instance Learning (MIL) strategy to align the high-level feature to the low-level ones in the stage-wise context flow. In addition, compared with these public crack datasets, to our best knowledge, we release the largest, most complex and most challenging Bitumen Pavement Crack (BPC) dataset. The experimental results on the three crack datasets demonstrate that the proposed method performs well and outperforms the current state-of-the-art methods.
Abstract:Parsing Computer-Aided Design (CAD) drawings is a fundamental step for CAD revision, semantic-based management, and the generation of 3D prototypes in both the architecture and engineering industries. Labeling symbols from a CAD drawing is a challenging yet notorious task from a practical point of view. In this work, we propose to label and spot symbols from CAD images that are converted from CAD drawings. The advantage of spotting symbols from CAD images lies in the low requirement of labelers and the low-cost annotation. However, pixel-wise spotting symbols from CAD images is challenging work. We propose a pixel-wise point location via Progressive Gaussian Kernels (PGK) to balance between training efficiency and location accuracy. Besides, we introduce a local offset to the heatmap-based point location method. Based on the keypoints detection, we propose a symbol grouping method to redraw the rectangle symbols in CAD images. We have released a dataset containing CAD images of equipment rooms from telecommunication industrial CAD drawings. Extensive experiments on this real-world dataset show that the proposed method has good generalization ability.
Abstract:Semi-supervised learning (SSL) is a practical challenge in computer vision. Pseudo-label (PL) methods, e.g., FixMatch and FreeMatch, obtain the State Of The Art (SOTA) performances in SSL. These approaches employ a threshold-to-pseudo-label (T2L) process to generate PLs by truncating the confidence scores of unlabeled data predicted by the self-training method. However, self-trained models typically yield biased and high-variance predictions, especially in the scenarios when a little labeled data are supplied. To address this issue, we propose a lightweight channel-based ensemble method to effectively consolidate multiple inferior PLs into the theoretically guaranteed unbiased and low-variance one. Importantly, our approach can be readily extended to any SSL framework, such as FixMatch or FreeMatch. Experimental results demonstrate that our method significantly outperforms state-of-the-art techniques on CIFAR10/100 in terms of effectiveness and efficiency.
Abstract:Existing Quantization-Aware Training (QAT) methods intensively depend on the complete labeled dataset or knowledge distillation to guarantee the performances toward Full Precision (FP) accuracies. However, empirical results show that QAT still has inferior results compared to its FP counterpart. One question is how to push QAT toward or even surpass FP performances. In this paper, we address this issue from a new perspective by injecting the vicinal data distribution information to improve the generalization performances of QAT effectively. We present a simple, novel, yet powerful method introducing an Consistency Regularization (CR) for QAT. Concretely, CR assumes that augmented samples should be consistent in the latent feature space. Our method generalizes well to different network architectures and various QAT methods. Extensive experiments demonstrate that our approach significantly outperforms the current state-of-the-art QAT methods and even FP counterparts.
Abstract:Both semi-supervised classification and regression are practically challenging tasks for computer vision. However, semi-supervised classification methods are barely applied to regression tasks. Because the threshold-to-pseudo label process (T2L) in classification uses confidence to determine the quality of label. It is successful for classification tasks but inefficient for regression tasks. In nature, regression also requires unbiased methods to generate high-quality labels. On the other hand, T2L for classification often fails if the confidence is generated by a biased method. To address this issue, in this paper, we propose a theoretically guaranteed constraint for generating unbiased labels based on Chebyshev's inequality, combining multiple predictions to generate superior quality labels from several inferior ones. In terms of high-quality labels, the unbiased method naturally avoids the drawback of T2L. Specially, we propose an Unbiased Pseudo-labels network (UBPL network) with multiple branches to combine multiple predictions as pseudo-labels, where a Feature Decorrelation loss (FD loss) is proposed based on Chebyshev constraint. In principle, our method can be used for both classification and regression and can be easily extended to any semi-supervised framework, e.g. Mean Teacher, FixMatch, DualPose. Our approach achieves superior performance over SOTAs on the pose estimation datasets Mouse, FLIC and LSP, as well as the classification datasets CIFAR10/100 and SVHN.
Abstract:Semi-supervised pose estimation is a practically challenging task for computer vision. Although numerous excellent semi-supervised classification methods have emerged, these methods typically use confidence to evaluate the quality of pseudo-labels, which is difficult to achieve in pose estimation tasks. For example, in pose estimation, confidence represents only the possibility that a position of the heatmap is a keypoint, not the quality of that prediction. In this paper, we propose a simple yet efficient framework to estimate the quality of pseudo-labels in semi-supervised pose estimation tasks from the perspective of modeling the uncertainty of the pseudo-labels. Concretely, under the dual mean-teacher framework, we construct the two maximum discrepant students (MDSs) to effectively push two teachers to generate different decision boundaries for the same sample. Moreover, we create multiple uncertainties to assess the quality of the pseudo-labels. Experimental results demonstrate that our method improves the performance of semi-supervised pose estimation on three datasets.