Abstract:Diffusion models have made compelling progress on facilitating high-throughput daily production. Nevertheless, the appealing customized requirements are remain suffered from instance-level finetuning for authentic fidelity. Prior zero-shot customization works achieve the semantic consistence through the condensed injection of identity features, while addressing detailed low-level signatures through complex model configurations and subject-specific fabrications, which significantly break the statistical coherence within the overall system and limit the applicability across various scenarios. To facilitate the generic signature concentration with rectified efficiency, we present \textbf{AnyLogo}, a zero-shot region customizer with remarkable detail consistency, building upon the symbiotic diffusion system with eliminated cumbersome designs. Streamlined as vanilla image generation, we discern that the rigorous signature extraction and creative content generation are promisingly compatible and can be systematically recycled within a single denoising model. In place of the external configurations, the gemini status of the denoising model promote the reinforced subject transmission efficiency and disentangled semantic-signature space with continuous signature decoration. Moreover, the sparse recycling paradigm is adopted to prevent the duplicated risk with compressed transmission quota for diversified signature stimulation. Extensive experiments on constructed logo-level benchmarks demonstrate the effectiveness and practicability of our methods.
Abstract:Involving collaborative information in Large Language Models (LLMs) is a promising technique for adapting LLMs for recommendation. Existing methods achieve this by concatenating collaborative features with text tokens into a unified sequence input and then fine-tuning to align these features with LLM's input space. Although effective, in this work, we identify two limitations when adapting LLMs to recommendation tasks, which hinder the integration of general knowledge and collaborative information, resulting in sub-optimal recommendation performance. (1) Fine-tuning LLM with recommendation data can undermine its inherent world knowledge and fundamental competencies, which are crucial for interpreting and inferring recommendation text. (2) Incorporating collaborative features into textual prompts disrupts the semantics of the original prompts, preventing LLM from generating appropriate outputs. In this paper, we propose a new paradigm, CoRA (an acronym for Collaborative LoRA), with a collaborative weights generator. Rather than input space alignment, this method aligns collaborative information with LLM's parameter space, representing them as incremental weights to update LLM's output. This way, LLM perceives collaborative information without altering its general knowledge and text inference capabilities. Specifically, we employ a collaborative filtering model to extract user and item embeddings, converting them into collaborative weights with low-rank properties through the collaborative weights generator. We then merge the collaborative weights into LLM's weights, enabling LLM to perceive the collaborative signals and generate personalized recommendations without fine-tuning or extra collaborative tokens in prompts. Extensive experiments confirm that CoRA effectively integrates collaborative information into LLM, enhancing recommendation performance.
Abstract:Diffusion models have made remarkable progress in solving various inverse problems, attributing to the generative modeling capability of the data manifold. Posterior sampling from the conditional score function enable the precious data consistency certified by the measurement-based likelihood term. However, most prevailing approaches confined to the deterministic deterioration process of the measurement model, regardless of capricious unpredictable disturbance in real-world sceneries. To address this obstacle, we show that the measurement-based likelihood can be renovated with restoration-based likelihood via the opposite probabilistic graphic direction, licencing the patronage of various off-the-shelf restoration models and extending the strictly deterministic deterioration process to adaptable clustered processes with the supposed prototype, in what we call restorer guidance. Particularly, assembled with versatile prototypes optionally, we can resolve inverse problems with bunch of choices for assorted sample quality and realize the proficient deterioration control with assured realistic. We show that our work can be formally analogous to the transition from classifier guidance to classifier-free guidance in the field of inverse problem solver. Experiments on multifarious inverse problems demonstrate the effectiveness of our method, including image dehazing, rain streak removal, and motion deblurring.
Abstract:The rapid spread of information through mobile devices and media has led to the widespread of false or deceptive news, causing significant concerns in society. Among different types of misinformation, image repurposing, also known as out-of-context misinformation, remains highly prevalent and effective. However, current approaches for detecting out-of-context misinformation often lack interpretability and offer limited explanations. In this study, we propose a logic regularization approach for out-of-context detection called LOGRAN (LOGic Regularization for out-of-context ANalysis). The primary objective of LOGRAN is to decompose the out-of-context detection at the phrase level. By employing latent variables for phrase-level predictions, the final prediction of the image-caption pair can be aggregated using logical rules. The latent variables also provide an explanation for how the final result is derived, making this fine-grained detection method inherently explanatory. We evaluate the performance of LOGRAN on the NewsCLIPpings dataset, showcasing competitive overall results. Visualized examples also reveal faithful phrase-level predictions of out-of-context images, accompanied by explanations. This highlights the effectiveness of our approach in addressing out-of-context detection and enhancing interpretability.
Abstract:Object hallucination has been an Achilles' heel which hinders the broader applications of large vision-language models (LVLMs). Object hallucination refers to the phenomenon that the LVLMs claim non-existent objects in the image. To mitigate the object hallucinations, instruction tuning and external model-based detection methods have been proposed, which either require large-scare computational resources or depend on the detection result of external models. However, there remains an under-explored field to utilize the LVLM itself to alleviate object hallucinations. In this work, we adopt the intuition that the LVLM tends to respond logically consistently for existent objects but inconsistently for hallucinated objects. Therefore, we propose a Logical Closed Loop-based framework for Object Hallucination Detection and Mitigation, namely LogicCheckGPT. In specific, we devise logical consistency probing to raise questions with logical correlations, inquiring about attributes from objects and vice versa. Whether their responses can form a logical closed loop serves as an indicator of object hallucination. As a plug-and-play method, it can be seamlessly applied to all existing LVLMs. Comprehensive experiments conducted on three benchmarks across four LVLMs have demonstrated significant improvements brought by our method, indicating its effectiveness and generality.
Abstract:Recently, the powerful large language models (LLMs) have been instrumental in propelling the progress of recommender systems (RS). However, while these systems have flourished, their susceptibility to security threats has been largely overlooked. In this work, we reveal that the introduction of LLMs into recommendation models presents new security vulnerabilities due to their emphasis on the textual content of items. We demonstrate that attackers can significantly boost an item's exposure by merely altering its textual content during the testing phase, without requiring direct interference with the model's training process. Additionally, the attack is notably stealthy, as it does not affect the overall recommendation performance and the modifications to the text are subtle, making it difficult for users and platforms to detect. Our comprehensive experiments across four mainstream LLM-based recommendation models demonstrate the superior efficacy and stealthiness of our approach. Our work unveils a significant security gap in LLM-based recommendation systems and paves the way for future research on protecting these systems.
Abstract:Graph Neural Networks (GNNs) have made significant advancements in node classification, but their success relies on sufficient labeled nodes per class in the training data. Real-world graph data often exhibits a long-tail distribution with sparse labels, emphasizing the importance of GNNs' ability in few-shot node classification, which entails categorizing nodes with limited data. Traditional episodic meta-learning approaches have shown promise in this domain, but they face an inherent limitation: it might lead the model to converge to suboptimal solutions because of random and uniform task assignment, ignoring task difficulty levels. This could lead the meta-learner to face complex tasks too soon, hindering proper learning. Ideally, the meta-learner should start with simple concepts and advance to more complex ones, like human learning. So, we introduce CPT, a novel two-stage curriculum learning method that aligns task difficulty with the meta-learner's progressive competence, enhancing overall performance. Specifically, in CPT's initial stage, the focus is on simpler tasks, fostering foundational skills for engaging with complex tasks later. Importantly, the second stage dynamically adjusts task difficulty based on the meta-learner's growing competence, aiming for optimal knowledge acquisition. Extensive experiments on popular node classification datasets demonstrate significant improvements of our strategy over existing methods.
Abstract:Learning to restore multiple image degradations within a single model is quite beneficial for real-world applications. Nevertheless, existing works typically concentrate on regarding each degradation independently, while their relationship has been less exploited to ensure the synergistic learning. To this end, we revisit the diverse degradations through the lens of singular value decomposition, with the observation that the decomposed singular vectors and singular values naturally undertake the different types of degradation information, dividing various restoration tasks into two groups,\ie, singular vector dominated and singular value dominated. The above analysis renders a more unified perspective to ascribe the diverse degradations, compared to previous task-level independent learning. The dedicated optimization of degraded singular vectors and singular values inherently utilizes the potential relationship among diverse restoration tasks, attributing to the Decomposition Ascribed Synergistic Learning (DASL). Specifically, DASL comprises two effective operators, namely, Singular VEctor Operator (SVEO) and Singular VAlue Operator (SVAO), to favor the decomposed optimization, which can be lightly integrated into existing convolutional image restoration backbone. Moreover, the congruous decomposition loss has been devised for auxiliary. Extensive experiments on blended five image restoration tasks demonstrate the effectiveness of our method, including image deraining, image dehazing, image denoising, image deblurring, and low-light image enhancement.
Abstract:Multimedia content is of predominance in the modern Web era. In real scenarios, multiple modalities reveal different aspects of item attributes and usually possess different importance to user purchase decisions. However, it is difficult for models to figure out users' true preference towards different modalities since there exists strong statistical correlation between modalities. Even worse, the strong statistical correlation might mislead models to learn the spurious preference towards inconsequential modalities. As a result, when data (modal features) distribution shifts, the learned spurious preference might not guarantee to be as effective on the inference set as on the training set. We propose a novel MOdality DEcorrelating STable learning framework, MODEST for brevity, to learn users' stable preference. Inspired by sample re-weighting techniques, the proposed method aims to estimate a weight for each item, such that the features from different modalities in the weighted distribution are decorrelated. We adopt Hilbert Schmidt Independence Criterion (HSIC) as independence testing measure which is a kernel-based method capable of evaluating the correlation degree between two multi-dimensional and non-linear variables. Our method could be served as a play-and-plug module for existing multimedia recommendation backbones. Extensive experiments on four public datasets and four state-of-the-art multimedia recommendation backbones unequivocally show that our proposed method can improve the performances by a large margin.
Abstract:Recent years have witnessed growing interests in multimedia recommendation, which aims to predict whether a user will interact with an item with multimodal contents. Previous studies focus on modeling user-item interactions with multimodal features included as side information. However, this scheme is not well-designed for multimedia recommendation. Firstly, only collaborative item-item relationships are implicitly modeled through high-order item-user-item co-occurrences. We argue that the latent semantic item-item structures underlying these multimodal contents could be beneficial for learning better item representations and assist the recommender models to comprehensively discover candidate items. Secondly, previous studies disregard the fine-grained multimodal fusion. Although having access to multiple modalities might allow us to capture rich information, we argue that the simple coarse-grained fusion by linear combination or concatenation in previous work is insufficient to fully understand content information and item relationships.To this end, we propose a latent structure MIning with ContRastive mOdality fusion method (MICRO for brevity). To be specific, we devise a novel modality-aware structure learning module, which learns item-item relationships for each modality. Based on the learned modality-aware latent item relationships, we perform graph convolutions that explicitly inject item affinities to modality-aware item representations. Then, we design a novel contrastive method to fuse multimodal features. These enriched item representations can be plugged into existing collaborative filtering methods to make more accurate recommendations. Extensive experiments on real-world datasets demonstrate the superiority of our method over state-of-the-art baselines.