Abstract:The ubiquity and value of tables as semi-structured data across various domains necessitate advanced methods for understanding their complexity and vast amounts of information. Despite the impressive capabilities of large language models (LLMs) in advancing the natural language understanding frontier, their application to large-scale tabular data presents significant challenges, specifically regarding table size and complex intricate relationships. Existing works have shown promise with small-scale tables but often flounder when tasked with the complex reasoning required by larger, interconnected tables found in real-world scenarios. To address this gap, we introduce "Tree-of-Table", a novel approach designed to enhance LLMs' reasoning capabilities over large and complex tables. Our method employs Table Condensation and Decomposition to distill and reorganize relevant data into a manageable format, followed by the construction of a hierarchical Table-Tree that facilitates tree-structured reasoning. Through a meticulous Table-Tree Execution process, we systematically unravel the tree-structured reasoning chain to derive the solutions. Experiments across diverse datasets, including WikiTQ, TableFact, FeTaQA, and BIRD, demonstrate that Tree-of-Table sets a new benchmark with superior performance, showcasing remarkable efficiency and generalization capabilities in large-scale table reasoning.
Abstract:Diffusion models have made compelling progress on facilitating high-throughput daily production. Nevertheless, the appealing customized requirements are remain suffered from instance-level finetuning for authentic fidelity. Prior zero-shot customization works achieve the semantic consistence through the condensed injection of identity features, while addressing detailed low-level signatures through complex model configurations and subject-specific fabrications, which significantly break the statistical coherence within the overall system and limit the applicability across various scenarios. To facilitate the generic signature concentration with rectified efficiency, we present \textbf{AnyLogo}, a zero-shot region customizer with remarkable detail consistency, building upon the symbiotic diffusion system with eliminated cumbersome designs. Streamlined as vanilla image generation, we discern that the rigorous signature extraction and creative content generation are promisingly compatible and can be systematically recycled within a single denoising model. In place of the external configurations, the gemini status of the denoising model promote the reinforced subject transmission efficiency and disentangled semantic-signature space with continuous signature decoration. Moreover, the sparse recycling paradigm is adopted to prevent the duplicated risk with compressed transmission quota for diversified signature stimulation. Extensive experiments on constructed logo-level benchmarks demonstrate the effectiveness and practicability of our methods.
Abstract:Information seeking and integration is a complex cognitive task that consumes enormous time and effort. Inspired by the remarkable progress of Large Language Models, recent works attempt to solve this task by combining LLMs and search engines. However, these methods still obtain unsatisfying performance due to three challenges: (1) complex requests often cannot be accurately and completely retrieved by the search engine once (2) corresponding information to be integrated is spread over multiple web pages along with massive noise, and (3) a large number of web pages with long contents may quickly exceed the maximum context length of LLMs. Inspired by the cognitive process when humans solve these problems, we introduce MindSearch to mimic the human minds in web information seeking and integration, which can be instantiated by a simple yet effective LLM-based multi-agent framework. The WebPlanner models the human mind of multi-step information seeking as a dynamic graph construction process: it decomposes the user query into atomic sub-questions as nodes in the graph and progressively extends the graph based on the search result from WebSearcher. Tasked with each sub-question, WebSearcher performs hierarchical information retrieval with search engines and collects valuable information for WebPlanner. The multi-agent design of MindSearch enables the whole framework to seek and integrate information parallelly from larger-scale (e.g., more than 300) web pages in 3 minutes, which is worth 3 hours of human effort. MindSearch demonstrates significant improvement in the response quality in terms of depth and breadth, on both close-set and open-set QA problems. Besides, responses from MindSearch based on InternLM2.5-7B are preferable by humans to ChatGPT-Web and Perplexity.ai applications, which implies that MindSearch can already deliver a competitive solution to the proprietary AI search engine.
Abstract:Diffusion models have made remarkable progress in solving various inverse problems, attributing to the generative modeling capability of the data manifold. Posterior sampling from the conditional score function enable the precious data consistency certified by the measurement-based likelihood term. However, most prevailing approaches confined to the deterministic deterioration process of the measurement model, regardless of capricious unpredictable disturbance in real-world sceneries. To address this obstacle, we show that the measurement-based likelihood can be renovated with restoration-based likelihood via the opposite probabilistic graphic direction, licencing the patronage of various off-the-shelf restoration models and extending the strictly deterministic deterioration process to adaptable clustered processes with the supposed prototype, in what we call restorer guidance. Particularly, assembled with versatile prototypes optionally, we can resolve inverse problems with bunch of choices for assorted sample quality and realize the proficient deterioration control with assured realistic. We show that our work can be formally analogous to the transition from classifier guidance to classifier-free guidance in the field of inverse problem solver. Experiments on multifarious inverse problems demonstrate the effectiveness of our method, including image dehazing, rain streak removal, and motion deblurring.
Abstract:We present RodinHD, which can generate high-fidelity 3D avatars from a portrait image. Existing methods fail to capture intricate details such as hairstyles which we tackle in this paper. We first identify an overlooked problem of catastrophic forgetting that arises when fitting triplanes sequentially on many avatars, caused by the MLP decoder sharing scheme. To overcome this issue, we raise a novel data scheduling strategy and a weight consolidation regularization term, which improves the decoder's capability of rendering sharper details. Additionally, we optimize the guiding effect of the portrait image by computing a finer-grained hierarchical representation that captures rich 2D texture cues, and injecting them to the 3D diffusion model at multiple layers via cross-attention. When trained on 46K avatars with a noise schedule optimized for triplanes, the resulting model can generate 3D avatars with notably better details than previous methods and can generalize to in-the-wild portrait input.
Abstract:The ascension of Unmanned Aerial Vehicles (UAVs) in various fields necessitates effective UAV image segmentation, which faces challenges due to the dynamic perspectives of UAV-captured images. Traditional segmentation algorithms falter as they cannot accurately mimic the complexity of UAV perspectives, and the cost of obtaining multi-perspective labeled datasets is prohibitive. To address these issues, we introduce the PPTFormer, a novel \textbf{P}seudo Multi-\textbf{P}erspective \textbf{T}rans\textbf{former} network that revolutionizes UAV image segmentation. Our approach circumvents the need for actual multi-perspective data by creating pseudo perspectives for enhanced multi-perspective learning. The PPTFormer network boasts Perspective Decomposition, novel Perspective Prototypes, and a specialized encoder and decoder that together achieve superior segmentation results through Pseudo Multi-Perspective Attention (PMP Attention) and fusion. Our experiments demonstrate that PPTFormer achieves state-of-the-art performance across five UAV segmentation datasets, confirming its capability to effectively simulate UAV flight perspectives and significantly advance segmentation precision. This work presents a pioneering leap in UAV scene understanding and sets a new benchmark for future developments in semantic segmentation.
Abstract:Image restoration has made marvelous progress with the advent of deep learning. Previous methods usually rely on designing powerful network architecture to elevate performance, however, the natural visual effect of the restored results is limited by color and texture distortions. Besides the visual perceptual quality, the semantic perception recovery is an important but often overlooked perspective of restored image, which is crucial for the deployment in high-level tasks. In this paper, we propose a new perspective to resort these issues by introducing a naturalness-oriented and semantic-aware optimization mechanism, dubbed DiffLoss. Specifically, inspired by the powerful distribution coverage capability of the diffusion model for natural image generation, we exploit the Markov chain sampling property of diffusion model and project the restored results of existing networks into the sampling space. Besides, we reveal that the bottleneck feature of diffusion models, also dubbed h-space feature, is a natural high-level semantic space. We delve into this property and propose a semantic-aware loss to further unlock its potential of semantic perception recovery, which paves the way to connect image restoration task and downstream high-level recognition task. With these two strategies, the DiffLoss can endow existing restoration methods with both more natural and semantic-aware results. We verify the effectiveness of our method on substantial common image restoration tasks and benchmarks. Code will be available at https://github.com/JosephTiTan/DiffLoss.
Abstract:The emergence of Vision Language Models (VLMs) has brought unprecedented advances in understanding multimodal information. The combination of textual and visual semantics in VLMs is highly complex and diverse, making the safety alignment of these models challenging. Furthermore, due to the limited study on the safety alignment of VLMs, there is a lack of large-scale, high-quality datasets. To address these limitations, we propose a Safety Preference Alignment dataset for Vision Language Models named SPA-VL. In terms of breadth, SPA-VL covers 6 harmfulness domains, 13 categories, and 53 subcategories, and contains 100,788 samples of the quadruple (question, image, chosen response, rejected response). In terms of depth, the responses are collected from 12 open- (e.g., QwenVL) and closed-source (e.g., Gemini) VLMs to ensure diversity. The experimental results indicate that models trained with alignment techniques on the SPA-VL dataset exhibit substantial improvements in harmlessness and helpfulness while maintaining core capabilities. SPA-VL, as a large-scale, high-quality, and diverse dataset, represents a significant milestone in ensuring that VLMs achieve both harmlessness and helpfulness. We have made our code https://github.com/EchoseChen/SPA-VL-RLHF and SPA-VL dataset url https://huggingface.co/datasets/sqrti/SPA-VL publicly available.
Abstract:In this paper, we address the challenge of Perspective-Invariant Learning in machine learning and computer vision, which involves enabling a network to understand images from varying perspectives to achieve consistent semantic interpretation. While standard approaches rely on the labor-intensive collection of multi-view images or limited data augmentation techniques, we propose a novel framework, Discrete Latent Perspective Learning (DLPL), for latent multi-perspective fusion learning using conventional single-view images. DLPL comprises three main modules: Perspective Discrete Decomposition (PDD), Perspective Homography Transformation (PHT), and Perspective Invariant Attention (PIA), which work together to discretize visual features, transform perspectives, and fuse multi-perspective semantic information, respectively. DLPL is a universal perspective learning framework applicable to a variety of scenarios and vision tasks. Extensive experiments demonstrate that DLPL significantly enhances the network's capacity to depict images across diverse scenarios (daily photos, UAV, auto-driving) and tasks (detection, segmentation).
Abstract:We present the ShareGPT4Video series, aiming to facilitate the video understanding of large video-language models (LVLMs) and the video generation of text-to-video models (T2VMs) via dense and precise captions. The series comprises: 1) ShareGPT4Video, 40K GPT4V annotated dense captions of videos with various lengths and sources, developed through carefully designed data filtering and annotating strategy. 2) ShareCaptioner-Video, an efficient and capable captioning model for arbitrary videos, with 4.8M high-quality aesthetic videos annotated by it. 3) ShareGPT4Video-8B, a simple yet superb LVLM that reached SOTA performance on three advancing video benchmarks. To achieve this, taking aside the non-scalable costly human annotators, we find using GPT4V to caption video with a naive multi-frame or frame-concatenation input strategy leads to less detailed and sometimes temporal-confused results. We argue the challenge of designing a high-quality video captioning strategy lies in three aspects: 1) Inter-frame precise temporal change understanding. 2) Intra-frame detailed content description. 3) Frame-number scalability for arbitrary-length videos. To this end, we meticulously designed a differential video captioning strategy, which is stable, scalable, and efficient for generating captions for videos with arbitrary resolution, aspect ratios, and length. Based on it, we construct ShareGPT4Video, which contains 40K high-quality videos spanning a wide range of categories, and the resulting captions encompass rich world knowledge, object attributes, camera movements, and crucially, detailed and precise temporal descriptions of events. Based on ShareGPT4Video, we further develop ShareCaptioner-Video, a superior captioner capable of efficiently generating high-quality captions for arbitrary videos...