Abstract:Data scarcity fundamentally limits the generalization of bimanual dexterous manipulation, as real-world data collection for dexterous hands is expensive and labor-intensive. Human manipulation videos, as a direct carrier of manipulation knowledge, offer significant potential for scaling up robot learning. However, the substantial embodiment gap between human hands and robotic dexterous hands makes direct pretraining from human videos extremely challenging. To bridge this gap and unleash the potential of large-scale human manipulation video data, we propose DexImit, an automated framework that converts monocular human manipulation videos into physically plausible robot data, without any additional information. DexImit employs a four-stage generation pipeline: (1) reconstructing hand-object interactions from arbitrary viewpoints with near-metric scale; (2) performing subtask decomposition and bimanual scheduling; (3) synthesizing robot trajectories consistent with the demonstrated interactions; (4) comprehensive data augmentation for zero-shot real-world deployment. Building on these designs, DexImit can generate large-scale robot data based on human videos, either from the Internet or video generation models. DexImit is capable of handling diverse manipulation tasks, including tool use (e.g., cutting an apple), long-horizon tasks (e.g., making a beverage), and fine-grained manipulations (e.g., stacking cups).
Abstract:3D spatial perception is fundamental to generalizable robotic manipulation, yet obtaining reliable, high-quality 3D geometry remains challenging. Depth sensors suffer from noise and material sensitivity, while existing reconstruction models lack the precision and metric consistency required for physical interaction. We introduce Robo3R, a feed-forward, manipulation-ready 3D reconstruction model that predicts accurate, metric-scale scene geometry directly from RGB images and robot states in real time. Robo3R jointly infers scale-invariant local geometry and relative camera poses, which are unified into the scene representation in the canonical robot frame via a learned global similarity transformation. To meet the precision demands of manipulation, Robo3R employs a masked point head for sharp, fine-grained point clouds, and a keypoint-based Perspective-n-Point (PnP) formulation to refine camera extrinsics and global alignment. Trained on Robo3R-4M, a curated large-scale synthetic dataset with four million high-fidelity annotated frames, Robo3R consistently outperforms state-of-the-art reconstruction methods and depth sensors. Across downstream tasks including imitation learning, sim-to-real transfer, grasp synthesis, and collision-free motion planning, we observe consistent gains in performance, suggesting the promise of this alternative 3D sensing module for robotic manipulation.
Abstract:Large vision-language models (VLMs) excel at multimodal understanding but fall short when extended to embodied tasks, where instructions must be transformed into low-level motor actions. We introduce ST4VLA, a dual-system Vision-Language-Action framework that leverages Spatial Guided Training to align action learning with spatial priors in VLMs. ST4VLA includes two stages: (i) spatial grounding pre-training, which equips the VLM with transferable priors via scalable point, box, and trajectory prediction from both web-scale and robot-specific data, and (ii) spatially guided action post-training, which encourages the model to produce richer spatial priors to guide action generation via spatial prompting. This design preserves spatial grounding during policy learning and promotes consistent optimization across spatial and action objectives. Empirically, ST4VLA achieves substantial improvements over vanilla VLA, with performance increasing from 66.1 -> 84.6 on Google Robot and from 54.7 -> 73.2 on WidowX Robot, establishing new state-of-the-art results on SimplerEnv. It also demonstrates stronger generalization to unseen objects and paraphrased instructions, as well as robustness to long-horizon perturbations in real-world settings. These results highlight scalable spatially guided training as a promising direction for robust, generalizable robot learning. Source code, data and models are released at https://internrobotics.github.io/internvla-m1.github.io/
Abstract:Advances in large vision-language models (VLMs) have stimulated growing interest in vision-language-action (VLA) systems for robot manipulation. However, existing manipulation datasets remain costly to curate, highly embodiment-specific, and insufficient in coverage and diversity, thereby hindering the generalization of VLA models. Recent approaches attempt to mitigate these limitations via a plan-then-execute paradigm, where high-level plans (e.g., subtasks, trace) are first generated and subsequently translated into low-level actions, but they critically rely on extra intermediate supervision, which is largely absent from existing datasets. To bridge this gap, we introduce the RoboInter Manipulation Suite, a unified resource including data, benchmarks, and models of intermediate representations for manipulation. It comprises RoboInter-Tool, a lightweight GUI that enables semi-automatic annotation of diverse representations, and RoboInter-Data, a large-scale dataset containing over 230k episodes across 571 diverse scenes, which provides dense per-frame annotations over more than 10 categories of intermediate representations, substantially exceeding prior work in scale and annotation quality. Building upon this foundation, RoboInter-VQA introduces 9 spatial and 20 temporal embodied VQA categories to systematically benchmark and enhance the embodied reasoning capabilities of VLMs. Meanwhile, RoboInter-VLA offers an integrated plan-then-execute framework, supporting modular and end-to-end VLA variants that bridge high-level planning with low-level execution via intermediate supervision. In total, RoboInter establishes a practical foundation for advancing robust and generalizable robotic learning via fine-grained and diverse intermediate representations.
Abstract:Feed-forward multi-frame 3D reconstruction models often degrade on videos with object motion. Global-reference becomes ambiguous under multiple motions, while the local pointmap relies heavily on estimated relative poses and can drift, causing cross-frame misalignment and duplicated structures. We propose TrajVG, a reconstruction framework that makes cross-frame 3D correspondence an explicit prediction by estimating camera-coordinate 3D trajectories. We couple sparse trajectories, per-frame local point maps, and relative camera poses with geometric consistency objectives: (i) bidirectional trajectory-pointmap consistency with controlled gradient flow, and (ii) a pose consistency objective driven by static track anchors that suppresses gradients from dynamic regions. To scale training to in-the-wild videos where 3D trajectory labels are scarce, we reformulate the same coupling constraints into self-supervised objectives using only pseudo 2D tracks, enabling unified training with mixed supervision. Extensive experiments across 3D tracking, pose estimation, pointmap reconstruction, and video depth show that TrajVG surpasses the current feedforward performance baseline.
Abstract:Learning-based whole-body controllers have become a key driver for humanoid robots, yet most existing approaches require robot-specific training. In this paper, we study the problem of cross-embodiment humanoid control and show that a single policy can robustly generalize across a wide range of humanoid robot designs with one-time training. We introduce XHugWBC, a novel cross-embodiment training framework that enables generalist humanoid control through: (1) physics-consistent morphological randomization, (2) semantically aligned observation and action spaces across diverse humanoid robots, and (3) effective policy architectures modeling morphological and dynamical properties. XHugWBC is not tied to any specific robot. Instead, it internalizes a broad distribution of morphological and dynamical characteristics during training. By learning motion priors from diverse randomized embodiments, the policy acquires a strong structural bias that supports zero-shot transfer to previously unseen robots. Experiments on twelve simulated humanoids and seven real-world robots demonstrate the strong generalization and robustness of the resulting universal controller.
Abstract:Point tracking aims to follow visual points through complex motion, occlusion, and viewpoint changes, and has advanced rapidly with modern foundation models. Yet progress toward general point tracking remains constrained by limited high-quality data, as existing datasets often provide insufficient diversity and imperfect trajectory annotations. To this end, we introduce SynthVerse, a large-scale, diverse synthetic dataset specifically designed for point tracking. SynthVerse includes several new domains and object types missing from existing synthetic datasets, such as animated-film-style content, embodied manipulation, scene navigation, and articulated objects. SynthVerse substantially expands dataset diversity by covering a broader range of object categories and providing high-quality dynamic motions and interactions, enabling more robust training and evaluation for general point tracking. In addition, we establish a highly diverse point tracking benchmark to systematically evaluate state-of-the-art methods under broader domain shifts. Extensive experiments and analyses demonstrate that training with SynthVerse yields consistent improvements in generalization and reveal limitations of existing trackers under diverse settings.
Abstract:Humanoid Whole-Body Controllers trained with reinforcement learning (RL) have recently achieved remarkable performance, yet many target a single robot embodiment. Variations in dynamics, degrees of freedom (DoFs), and kinematic topology still hinder a single policy from commanding diverse humanoids. Moreover, obtaining a generalist policy that not only transfers across embodiments but also supports richer behaviors-beyond simple walking to squatting, leaning-remains especially challenging. In this work, we tackle these obstacles by introducing EAGLE, an iterative generalist-specialist distillation framework that produces a single unified policy that controls multiple heterogeneous humanoids without per-robot reward tuning. During each cycle, embodiment-specific specialists are forked from the current generalist, refined on their respective robots, and new skills are distilled back into the generalist by training on the pooled embodiment set. Repeating this loop until performance convergence produces a robust Whole-Body Controller validated on robots such as Unitree H1, G1, and Fourier N1. We conducted experiments on five different robots in simulation and four in real-world settings. Through quantitative evaluations, EAGLE achieves high tracking accuracy and robustness compared to other methods, marking a step toward scalable, fleet-level humanoid control. See more details at https://eagle-wbc.github.io/
Abstract:Enabling humanoid robots to perform agile and adaptive interactive tasks has long been a core challenge in robotics. Current approaches are bottlenecked by either the scarcity of realistic interaction data or the need for meticulous, task-specific reward engineering, which limits their scalability. To narrow this gap, we present HumanX, a full-stack framework that compiles human video into generalizable, real-world interaction skills for humanoids, without task-specific rewards. HumanX integrates two co-designed components: XGen, a data generation pipeline that synthesizes diverse and physically plausible robot interaction data from video while supporting scalable data augmentation; and XMimic, a unified imitation learning framework that learns generalizable interaction skills. Evaluated across five distinct domains--basketball, football, badminton, cargo pickup, and reactive fighting--HumanX successfully acquires 10 different skills and transfers them zero-shot to a physical Unitree G1 humanoid. The learned capabilities include complex maneuvers such as pump-fake turnaround fadeaway jumpshots without any external perception, as well as interactive tasks like sustained human-robot passing sequences over 10 consecutive cycles--learned from a single video demonstration. Our experiments show that HumanX achieves over 8 times higher generalization success than prior methods, demonstrating a scalable and task-agnostic pathway for learning versatile, real-world robot interactive skills.
Abstract:Simulating deformable objects under rich interactions remains a fundamental challenge for real-to-sim robot manipulation, with dynamics jointly driven by environmental effects and robot actions. Existing simulators rely on predefined physics or data-driven dynamics without robot-conditioned control, limiting accuracy, stability, and generalization. This paper presents SoMA, a 3D Gaussian Splat simulator for soft-body manipulation. SoMA couples deformable dynamics, environmental forces, and robot joint actions in a unified latent neural space for end-to-end real-to-sim simulation. Modeling interactions over learned Gaussian splats enables controllable, stable long-horizon manipulation and generalization beyond observed trajectories without predefined physical models. SoMA improves resimulation accuracy and generalization on real-world robot manipulation by 20%, enabling stable simulation of complex tasks such as long-horizon cloth folding.