Abstract:The Retrieval-Augmented Language Model (RALM) has shown remarkable performance on knowledge-intensive tasks by incorporating external knowledge during inference, which mitigates the factual hallucinations inherited in large language models (LLMs). Despite these advancements, challenges persist in the implementation of RALMs, particularly concerning their reliability and traceability. To be specific, the irrelevant document retrieval may result in unhelpful response generation or even deteriorate the performance of LLMs, while the lack of proper citations in generated outputs complicates efforts to verify the trustworthiness of the models. To this end, we propose a novel self-reasoning framework aimed at improving the reliability and traceability of RALMs, whose core idea is to leverage reasoning trajectories generated by the LLM itself. The framework involves constructing self-reason trajectories with three processes: a relevance-aware process, an evidence-aware selective process, and a trajectory analysis process. We have evaluated our framework across four public datasets (two short-form QA datasets, one long-form QA dataset, and one fact verification dataset) to demonstrate the superiority of our method, which can outperform existing state-of-art models and can achieve comparable performance with GPT-4, while only using 2,000 training samples.
Abstract:With the rapid development of multimodal large language models (MLLMs), especially their capabilities in visual chat through refer and ground functionalities, their significance is increasingly recognized. However, the biomedical field currently exhibits a substantial gap in this area, primarily due to the absence of a dedicated refer and ground dataset for biomedical images. To address this challenge, we devised the Med-GRIT-270k dataset. It comprises 270k question-and-answer pairs and spans eight distinct medical imaging modalities. Most importantly, it is the first dedicated to the biomedical domain and integrating refer and ground conversations. The key idea is to sample large-scale biomedical image-mask pairs from medical segmentation datasets and generate instruction datasets from text using chatGPT. Additionally, we introduce a Refer-and-Ground Multimodal Large Language Model for Biomedicine (BiRD) by using this dataset and multi-task instruction learning. Extensive experiments have corroborated the efficacy of the Med-GRIT-270k dataset and the multi-modal, fine-grained interactive capabilities of the BiRD model. This holds significant reference value for the exploration and development of intelligent biomedical assistants.
Abstract:With the emergence of LLMs and their integration with other data modalities, multi-modal 3D perception attracts more attention due to its connectivity to the physical world and makes rapid progress. However, limited by existing datasets, previous works mainly focus on understanding object properties or inter-object spatial relationships in a 3D scene. To tackle this problem, this paper builds the first largest ever multi-modal 3D scene dataset and benchmark with hierarchical grounded language annotations, MMScan. It is constructed based on a top-down logic, from region to object level, from a single target to inter-target relationships, covering holistic aspects of spatial and attribute understanding. The overall pipeline incorporates powerful VLMs via carefully designed prompts to initialize the annotations efficiently and further involve humans' correction in the loop to ensure the annotations are natural, correct, and comprehensive. Built upon existing 3D scanning data, the resulting multi-modal 3D dataset encompasses 1.4M meta-annotated captions on 109k objects and 7.7k regions as well as over 3.04M diverse samples for 3D visual grounding and question-answering benchmarks. We evaluate representative baselines on our benchmarks, analyze their capabilities in different aspects, and showcase the key problems to be addressed in the future. Furthermore, we use this high-quality dataset to train state-of-the-art 3D visual grounding and LLMs and obtain remarkable performance improvement both on existing benchmarks and in-the-wild evaluation. Codes, datasets, and benchmarks will be available at https://github.com/OpenRobotLab/EmbodiedScan.
Abstract:Prior studies on 3D scene understanding have primarily developed specialized models for specific tasks or required task-specific fine-tuning. In this study, we propose Grounded 3D-LLM, which explores the potential of 3D large multi-modal models (3D LMMs) to consolidate various 3D vision tasks within a unified generative framework. The model uses scene referent tokens as special noun phrases to reference 3D scenes, enabling the handling of sequences that interleave 3D and textual data. It offers a natural approach for translating 3D vision tasks into language formats using task-specific instruction templates. To facilitate the use of referent tokens in subsequent language modeling, we have curated large-scale grounded language datasets that offer finer scene-text correspondence at the phrase level by bootstrapping existing object labels. Subsequently, we introduced Contrastive LAnguage-Scene Pre-training (CLASP) to effectively leverage this data, thereby integrating 3D vision with language models. Our comprehensive evaluation covers open-ended tasks like dense captioning and 3D QA, alongside close-ended tasks such as object detection and language grounding. Experiments across multiple 3D benchmarks reveal the leading performance and the broad applicability of Grounded 3D-LLM. Code and datasets will be released on the project page: https://groundedscenellm.github.io/grounded_3d-llm.github.io.
Abstract:Unified multi-model representation spaces are the foundation of multimodal understanding and generation. However, the billions of model parameters and catastrophic forgetting problems make it challenging to further enhance pre-trained unified spaces. In this work, we propose FreeBind, an idea that treats multimodal representation spaces as basic units, and freely augments pre-trained unified space by integrating knowledge from extra expert spaces via "space bonds". Specifically, we introduce two kinds of basic space bonds: 1) Space Displacement Bond and 2) Space Combination Bond. Based on these basic bonds, we design Complex Sequential & Parallel Bonds to effectively integrate multiple spaces simultaneously. Benefiting from the modularization concept, we further propose a coarse-to-fine customized inference strategy to flexibly adjust the enhanced unified space for different purposes. Experimentally, we bind ImageBind with extra image-text and audio-text expert spaces, resulting in three main variants: ImageBind++, InternVL_IB, and InternVL_IB++. These resulting spaces outperform ImageBind on 5 audio-image-text downstream tasks across 9 datasets. Moreover, via customized inference, it even surpasses the advanced audio-text and image-text expert spaces.
Abstract:Unified multi-model representation spaces are the foundation of multimodal understanding and generation. However, the billions of model parameters and catastrophic forgetting problems make it challenging to further enhance pre-trained unified spaces. In this work, we propose Molecule-Space, an idea that treats multimodal representation spaces as "molecules", and augments pre-trained unified space by integrating knowledge from extra expert spaces via "molecules space reactions". Specifically, we introduce two kinds of basic space reactions: 1) Space Displacement Reaction and 2) Space Combination Reaction. Based on these defined basic reactions, we design Complex Sequential & Parallel Reactions to effectively integrate multiple spaces simultaneously. Benefiting from the modularization concept, we further propose a coarse-to-fine customized inference strategy to flexibly adjust the enhanced unified space for different purposes. Experimentally, we fuse the audio-image-text space of ImageBind with the image-text and audio-text expert spaces. The resulting space outperforms ImageBind on 5 downstream tasks across 9 datasets. Moreover, via customized inference, it even surpasses the used image-text and audio-text expert spaces.
Abstract:Temporal Video Grounding (TVG) aims to localize the temporal boundary of a specific segment in an untrimmed video based on a given language query. Since datasets in this domain are often gathered from limited video scenes, models tend to overfit to scene-specific factors, which leads to suboptimal performance when encountering new scenes in real-world applications. In a new scene, the fine-grained annotations are often insufficient due to the expensive labor cost, while the coarse-grained video-query pairs are easier to obtain. Thus, to address this issue and enhance model performance on new scenes, we explore the TVG task in an unsupervised domain adaptation (UDA) setting across scenes for the first time, where the video-query pairs in the source scene (domain) are labeled with temporal boundaries, while those in the target scene are not. Under the UDA setting, we introduce a novel Adversarial Multi-modal Domain Adaptation (AMDA) method to adaptively adjust the model's scene-related knowledge by incorporating insights from the target data. Specifically, we tackle the domain gap by utilizing domain discriminators, which help identify valuable scene-related features effective across both domains. Concurrently, we mitigate the semantic gap between different modalities by aligning video-query pairs with related semantics. Furthermore, we employ a mask-reconstruction approach to enhance the understanding of temporal semantics within a scene. Extensive experiments on Charades-STA, ActivityNet Captions, and YouCook2 demonstrate the effectiveness of our proposed method.
Abstract:Recent research has evidenced the significant potentials of Large Language Models (LLMs) in handling challenging tasks within 3D scenes. However, current models are constrained to addressing object-centric tasks, where each question-answer pair focuses solely on an individual object. In real-world applications, users may pose queries involving multiple objects or expect for answers that precisely reference various objects. We introduce the use of object identifiers to freely reference objects during a conversation. While this solution appears straightforward, it presents two main challenges: 1) How to establish a reliable one-to-one correspondence between each object and its identifier? 2) How to incorporate complex spatial relationships among dozens of objects into the embedding space of the LLM? To address these challenges, we propose a two-stage alignment method, which involves learning an attribute-aware token and a relation-aware token for each object. These tokens capture the object's attributes and spatial relationships with surrounding objects in the 3D scene. Once the alignment is established, we can fine-tune our model on various downstream tasks using instruction tuning. Experiments conducted on traditional datasets like ScanQA, ScanRefer, and Nr3D/Sr3D showcase the effectiveness of our proposed method. Additionally, we create a 3D scene captioning dataset annotated with rich object identifiers, with the assistant of GPT-4. This dataset aims to further explore the capability of object identifiers in effective object referencing and precise scene understanding.
Abstract:Multi-modal contrastive representation (MCR) of more than three modalities is critical in multi-modal learning. Although recent methods showcase impressive achievements, the high dependence on large-scale, high-quality paired data and the expensive training costs limit their further development. Inspired by recent C-MCR, this paper proposes Extending Multimodal Contrastive Representation (Ex-MCR), a training-efficient and paired-data-free method to flexibly learn unified contrastive representation space for more than three modalities by integrating the knowledge of existing MCR spaces. Specifically, Ex-MCR aligns multiple existing MCRs into the same based MCR, which can effectively preserve the original semantic alignment of the based MCR. Besides, we comprehensively enhance the entire learning pipeline for aligning MCR spaces from the perspectives of training data, architecture, and learning objectives. With the preserved original modality alignment and the enhanced space alignment, Ex-MCR shows superior representation learning performance and excellent modality extensibility. To demonstrate the effectiveness of Ex-MCR, we align the MCR spaces of CLAP (audio-text) and ULIP (3D-vision) into the CLIP (vision-text), leveraging the overlapping text and image modality, respectively. Remarkably, without using any paired data, Ex-MCR learns a 3D-image-text-audio unified contrastive representation, and it achieves state-of-the-art performance on audio-visual, 3D-image, audio-text, visual-text retrieval, and 3D object classification tasks. More importantly, extensive qualitative results further demonstrate the emergent semantic alignment between the extended modalities (e.g., audio and 3D), which highlights the great potential of modality extensibility.
Abstract:3D scene understanding has gained significant attention due to its wide range of applications. However, existing methods for 3D scene understanding are limited to specific downstream tasks, which hinders their practicality in real-world applications. This paper presents Chat-3D, which combines the 3D visual perceptual ability of pre-trained 3D representations and the impressive reasoning and conversation capabilities of advanced LLMs to achieve the first universal dialogue systems for 3D scenes. Specifically, we align 3D representations into the feature space of LLMs, thus enabling LLMs to perceive the 3D world. Given the scarcity of 3D scene-text data, we propose a three-stage training strategy to efficiently utilize the available data for better alignment. To enhance the reasoning ability and develop a user-friendly interaction scheme, we further construct a high-quality object-centric 3D instruction dataset and design an associated object-centric prompt. Our experiments show that Chat-3D achieves an impressive ability to comprehend diverse instructions for 3D scenes, engage in intricate spatial reasoning, and incorporate external knowledge into its responses. Chat-3D achieves a 75.6% relative score compared with GPT-4 on the constructed instruction dataset.