Abstract:The recent explosive growth of deep learning (DL) models has necessitated a compelling need for efficient job scheduling for distributed deep learning training with mixed parallelisms (DDLwMP) in GPU clusters. This paper proposes an adaptive shortest-remaining-processing-time-first (A-SRPT) scheduling algorithm, a novel prediction-assisted online scheduling approach designed to mitigate the challenges associated with DL cluster scheduling. By modeling each job as a graph corresponding to heterogeneous Deep Neural Network (DNN) models and their associated distributed training configurations, A-SRPT strategically assigns jobs to the available GPUs, thereby minimizing inter-server communication overhead. Observing that most DDLwMP jobs recur, A-SRPT incorporates a random forest regression model to predict training iterations. Crucially, A-SRPT maps the complex scheduling problem into a single-machine instance, which is addressed optimally by a preemptive "shortest-remaining-processing-time-first" strategy. This optimized solution serves as a guide for actual job scheduling within the GPU clusters, leading to a theoretically provable competitive scheduling efficiency. We conduct extensive real-world testbed and simulation experiments to verify our proposed algorithms.
Abstract:Large language model fine-tuning techniques typically depend on extensive labeled data, external guidance, and feedback, such as human alignment, scalar rewards, and demonstration. However, in practical application, the scarcity of specific knowledge poses unprecedented challenges to existing fine-tuning techniques. In this paper, focusing on fine-tuning tasks in specific domains with limited data, we introduce Natural Language Fine-Tuning (NLFT), which utilizes natural language for fine-tuning for the first time. By leveraging the strong language comprehension capability of the target LM, NLFT attaches the guidance of natural language to the token-level outputs. Then, saliency tokens are identified with calculated probabilities. Since linguistic information is effectively utilized in NLFT, our proposed method significantly reduces training costs. It markedly enhances training efficiency, comprehensively outperforming reinforcement fine-tuning algorithms in accuracy, time-saving, and resource conservation. Additionally, on the macro level, NLFT can be viewed as a token-level fine-grained optimization of SFT, thereby efficiently replacing the SFT process without the need for warm-up (as opposed to ReFT requiring multiple rounds of warm-up with SFT). Compared to SFT, NLFT does not increase the algorithmic complexity, maintaining O(n). Extensive experiments on the GSM8K dataset demonstrate that NLFT, with only 50 data instances, achieves an accuracy increase that exceeds SFT by 219%. Compared to ReFT, the time complexity and space complexity of NLFT are reduced by 78.27% and 92.24%, respectively. The superior technique of NLFT is paving the way for the deployment of various innovative LLM fine-tuning applications when resources are limited at network edges. Our code has been released at https://github.com/Julia-LiuJ/NLFT.
Abstract:Multi-objective optimization (MOO) lies at the core of many machine learning (ML) applications that involve multiple, potentially conflicting objectives (e.g., multi-task learning, multi-objective reinforcement learning, among many others). Despite the long history of MOO, recent years have witnessed a surge in interest within the ML community in the development of gradient manipulation algorithms for MOO, thanks to the availability of gradient information in many ML problems. However, existing gradient manipulation methods for MOO often suffer from long training times, primarily due to the need for computing dynamic weights by solving an additional optimization problem to determine a common descent direction that can decrease all objectives simultaneously. To address this challenge, we propose a new and efficient algorithm called Periodic Stochastic Multi-Gradient Descent (PSMGD) to accelerate MOO. PSMGD is motivated by the key observation that dynamic weights across objectives exhibit small changes under minor updates over short intervals during the optimization process. Consequently, our PSMGD algorithm is designed to periodically compute these dynamic weights and utilizes them repeatedly, thereby effectively reducing the computational overload. Theoretically, we prove that PSMGD can achieve state-of-the-art convergence rates for strongly-convex, general convex, and non-convex functions. Additionally, we introduce a new computational complexity measure, termed backpropagation complexity, and demonstrate that PSMGD could achieve an objective-independent backpropagation complexity. Through extensive experiments, we verify that PSMGD can provide comparable or superior performance to state-of-the-art MOO algorithms while significantly reducing training time.
Abstract:In recent years, Multimodal Large Language Models (MLLM) have achieved notable advancements, demonstrating the feasibility of developing an intelligent biomedical assistant. However, current biomedical MLLMs predominantly focus on image-level understanding and restrict interactions to textual commands, thus limiting their capability boundaries and the flexibility of usage. In this paper, we introduce a novel end-to-end multimodal large language model for the biomedical domain, named MedPLIB, which possesses pixel-level understanding. Excitingly, it supports visual question answering (VQA), arbitrary pixel-level prompts (points, bounding boxes, and free-form shapes), and pixel-level grounding. We propose a novel Mixture-of-Experts (MoE) multi-stage training strategy, which divides MoE into separate training phases for a visual-language expert model and a pixel-grounding expert model, followed by fine-tuning using MoE. This strategy effectively coordinates multitask learning while maintaining the computational cost at inference equivalent to that of a single expert model. To advance the research of biomedical MLLMs, we introduce the Medical Complex Vision Question Answering Dataset (MeCoVQA), which comprises an array of 8 modalities for complex medical imaging question answering and image region understanding. Experimental results indicate that MedPLIB has achieved state-of-the-art outcomes across multiple medical visual language tasks. More importantly, in zero-shot evaluations for the pixel grounding task, MedPLIB leads the best small and large models by margins of 19.7 and 15.6 respectively on the mDice metric. The codes, data, and model checkpoints will be made publicly available at https://github.com/ShawnHuang497/MedPLIB.
Abstract:Offline preference-based reinforcement learning (PbRL) typically operates in two phases: first, use human preferences to learn a reward model and annotate rewards for a reward-free offline dataset; second, learn a policy by optimizing the learned reward via offline RL. However, accurately modeling step-wise rewards from trajectory-level preference feedback presents inherent challenges. The reward bias introduced, particularly the overestimation of predicted rewards, leads to optimistic trajectory stitching, which undermines the pessimism mechanism critical to the offline RL phase. To address this challenge, we propose In-Dataset Trajectory Return Regularization (DTR) for offline PbRL, which leverages conditional sequence modeling to mitigate the risk of learning inaccurate trajectory stitching under reward bias. Specifically, DTR employs Decision Transformer and TD-Learning to strike a balance between maintaining fidelity to the behavior policy with high in-dataset trajectory returns and selecting optimal actions based on high reward labels. Additionally, we introduce an ensemble normalization technique that effectively integrates multiple reward models, balancing the tradeoff between reward differentiation and accuracy. Empirical evaluations on various benchmarks demonstrate the superiority of DTR over other state-of-the-art baselines
Abstract:Multi-image hiding, which embeds multiple secret images into a cover image and is able to recover these images with high quality, has gradually become a research hotspot in the field of image steganography. However, due to the need to embed a large amount of data in a limited cover image space, issues such as contour shadowing or color distortion often arise, posing significant challenges for multi-image hiding. In this paper, we propose StegaINR4MIH, a novel implicit neural representation steganography framework that enables the hiding of multiple images within a single implicit representation function. In contrast to traditional methods that use multiple encoders to achieve multi-image embedding, our approach leverages the redundancy of implicit representation function parameters and employs magnitude-based weight selection and secret weight substitution on pre-trained cover image functions to effectively hide and independently extract multiple secret images. We conduct experiments on images with a resolution of from three different datasets: CelebA-HQ, COCO, and DIV2K. When hiding two secret images, the PSNR values of both the secret images and the stego images exceed 42. When hiding five secret images, the PSNR values of both the secret images and the stego images exceed 39. Extensive experiments demonstrate the superior performance of the proposed method in terms of visual quality and undetectability.
Abstract:In the medical field, the limited availability of large-scale datasets and labor-intensive annotation processes hinder the performance of deep models. Diffusion-based generative augmentation approaches present a promising solution to this issue, having been proven effective in advancing downstream medical recognition tasks. Nevertheless, existing works lack sufficient semantic and sequential steerability for challenging video/3D sequence generation, and neglect quality control of noisy synthesized samples, resulting in unreliable synthetic databases and severely limiting the performance of downstream tasks. In this work, we present Ctrl-GenAug, a novel and general generative augmentation framework that enables highly semantic- and sequential-customized sequence synthesis and suppresses incorrectly synthesized samples, to aid medical sequence classification. Specifically, we first design a multimodal conditions-guided sequence generator for controllably synthesizing diagnosis-promotive samples. A sequential augmentation module is integrated to enhance the temporal/stereoscopic coherence of generated samples. Then, we propose a noisy synthetic data filter to suppress unreliable cases at semantic and sequential levels. Extensive experiments on 3 medical datasets, using 11 networks trained on 3 paradigms, comprehensively analyze the effectiveness and generality of Ctrl-GenAug, particularly in underrepresented high-risk populations and out-domain conditions.
Abstract:Lifelong learning in artificial intelligence (AI) aims to mimic the biological brain's ability to continuously learn and retain knowledge, yet it faces challenges such as catastrophic forgetting. Recent neuroscience research suggests that neural activity in biological systems undergoes representational drift, where neural responses evolve over time, even with consistent inputs and tasks. We hypothesize that representational drift can alleviate catastrophic forgetting in AI during new task acquisition. To test this, we introduce DriftNet, a network designed to constantly explore various local minima in the loss landscape while dynamically retrieving relevant tasks. This approach ensures efficient integration of new information and preserves existing knowledge. Experimental studies in image classification and natural language processing demonstrate that DriftNet outperforms existing models in lifelong learning. Importantly, DriftNet is scalable in handling a sequence of tasks such as sentiment analysis and question answering using large language models (LLMs) with billions of parameters on a single Nvidia A100 GPU. DriftNet efficiently updates LLMs using only new data, avoiding the need for full dataset retraining. Tested on GPT-2 and RoBERTa, DriftNet is a robust, cost-effective solution for lifelong learning in LLMs. This study not only advances AI systems to emulate biological learning, but also provides insights into the adaptive mechanisms of biological neural systems, deepening our understanding of lifelong learning in nature.
Abstract:Anomalous Sound Detection (ASD) has gained significant interest through the application of various Artificial Intelligence (AI) technologies in industrial settings. Though possessing great potential, ASD systems can hardly be readily deployed in real production sites due to the generalization problem, which is primarily caused by the difficulty of data collection and the complexity of environmental factors. This paper introduces a robust ASD model that leverages audio pre-trained models. Specifically, we fine-tune these models using machine operation data, employing SpecAug as a data augmentation strategy. Additionally, we investigate the impact of utilizing Low-Rank Adaptation (LoRA) tuning instead of full fine-tuning to address the problem of limited data for fine-tuning. Our experiments on the DCASE2023 Task 2 dataset establish a new benchmark of 77.75% on the evaluation set, with a significant improvement of 6.48% compared with previous state-of-the-art (SOTA) models, including top-tier traditional convolutional networks and speech pre-trained models, which demonstrates the effectiveness of audio pre-trained models with LoRA tuning. Ablation studies are also conducted to showcase the efficacy of the proposed scheme.
Abstract:Deep speech classification tasks, mainly including keyword spotting and speaker verification, play a crucial role in speech-based human-computer interaction. Recently, the security of these technologies has been demonstrated to be vulnerable to backdoor attacks. Specifically speaking, speech samples are attacked by noisy disruption and component modification in present triggers. We suggest that speech backdoor attacks can strategically focus on emotion, a higher-level subjective perceptual attribute inherent in speech. Furthermore, we proposed that emotional voice conversion technology can serve as the speech backdoor attack trigger, and the method is called EmoAttack. Based on this, we conducted attack experiments on two speech classification tasks, showcasing that EmoAttack method owns impactful trigger effectiveness and its remarkable attack success rate and accuracy variance. Additionally, the ablation experiments found that speech with intensive emotion is more suitable to be targeted for attacks.