Abstract:Multi-image hiding, which embeds multiple secret images into a cover image and is able to recover these images with high quality, has gradually become a research hotspot in the field of image steganography. However, due to the need to embed a large amount of data in a limited cover image space, issues such as contour shadowing or color distortion often arise, posing significant challenges for multi-image hiding. In this paper, we propose StegaINR4MIH, a novel implicit neural representation steganography framework that enables the hiding of multiple images within a single implicit representation function. In contrast to traditional methods that use multiple encoders to achieve multi-image embedding, our approach leverages the redundancy of implicit representation function parameters and employs magnitude-based weight selection and secret weight substitution on pre-trained cover image functions to effectively hide and independently extract multiple secret images. We conduct experiments on images with a resolution of from three different datasets: CelebA-HQ, COCO, and DIV2K. When hiding two secret images, the PSNR values of both the secret images and the stego images exceed 42. When hiding five secret images, the PSNR values of both the secret images and the stego images exceed 39. Extensive experiments demonstrate the superior performance of the proposed method in terms of visual quality and undetectability.
Abstract:In the medical field, the limited availability of large-scale datasets and labor-intensive annotation processes hinder the performance of deep models. Diffusion-based generative augmentation approaches present a promising solution to this issue, having been proven effective in advancing downstream medical recognition tasks. Nevertheless, existing works lack sufficient semantic and sequential steerability for challenging video/3D sequence generation, and neglect quality control of noisy synthesized samples, resulting in unreliable synthetic databases and severely limiting the performance of downstream tasks. In this work, we present Ctrl-GenAug, a novel and general generative augmentation framework that enables highly semantic- and sequential-customized sequence synthesis and suppresses incorrectly synthesized samples, to aid medical sequence classification. Specifically, we first design a multimodal conditions-guided sequence generator for controllably synthesizing diagnosis-promotive samples. A sequential augmentation module is integrated to enhance the temporal/stereoscopic coherence of generated samples. Then, we propose a noisy synthetic data filter to suppress unreliable cases at semantic and sequential levels. Extensive experiments on 3 medical datasets, using 11 networks trained on 3 paradigms, comprehensively analyze the effectiveness and generality of Ctrl-GenAug, particularly in underrepresented high-risk populations and out-domain conditions.
Abstract:Lifelong learning in artificial intelligence (AI) aims to mimic the biological brain's ability to continuously learn and retain knowledge, yet it faces challenges such as catastrophic forgetting. Recent neuroscience research suggests that neural activity in biological systems undergoes representational drift, where neural responses evolve over time, even with consistent inputs and tasks. We hypothesize that representational drift can alleviate catastrophic forgetting in AI during new task acquisition. To test this, we introduce DriftNet, a network designed to constantly explore various local minima in the loss landscape while dynamically retrieving relevant tasks. This approach ensures efficient integration of new information and preserves existing knowledge. Experimental studies in image classification and natural language processing demonstrate that DriftNet outperforms existing models in lifelong learning. Importantly, DriftNet is scalable in handling a sequence of tasks such as sentiment analysis and question answering using large language models (LLMs) with billions of parameters on a single Nvidia A100 GPU. DriftNet efficiently updates LLMs using only new data, avoiding the need for full dataset retraining. Tested on GPT-2 and RoBERTa, DriftNet is a robust, cost-effective solution for lifelong learning in LLMs. This study not only advances AI systems to emulate biological learning, but also provides insights into the adaptive mechanisms of biological neural systems, deepening our understanding of lifelong learning in nature.
Abstract:Anomalous Sound Detection (ASD) has gained significant interest through the application of various Artificial Intelligence (AI) technologies in industrial settings. Though possessing great potential, ASD systems can hardly be readily deployed in real production sites due to the generalization problem, which is primarily caused by the difficulty of data collection and the complexity of environmental factors. This paper introduces a robust ASD model that leverages audio pre-trained models. Specifically, we fine-tune these models using machine operation data, employing SpecAug as a data augmentation strategy. Additionally, we investigate the impact of utilizing Low-Rank Adaptation (LoRA) tuning instead of full fine-tuning to address the problem of limited data for fine-tuning. Our experiments on the DCASE2023 Task 2 dataset establish a new benchmark of 77.75% on the evaluation set, with a significant improvement of 6.48% compared with previous state-of-the-art (SOTA) models, including top-tier traditional convolutional networks and speech pre-trained models, which demonstrates the effectiveness of audio pre-trained models with LoRA tuning. Ablation studies are also conducted to showcase the efficacy of the proposed scheme.
Abstract:Deep speech classification tasks, mainly including keyword spotting and speaker verification, play a crucial role in speech-based human-computer interaction. Recently, the security of these technologies has been demonstrated to be vulnerable to backdoor attacks. Specifically speaking, speech samples are attacked by noisy disruption and component modification in present triggers. We suggest that speech backdoor attacks can strategically focus on emotion, a higher-level subjective perceptual attribute inherent in speech. Furthermore, we proposed that emotional voice conversion technology can serve as the speech backdoor attack trigger, and the method is called EmoAttack. Based on this, we conducted attack experiments on two speech classification tasks, showcasing that EmoAttack method owns impactful trigger effectiveness and its remarkable attack success rate and accuracy variance. Additionally, the ablation experiments found that speech with intensive emotion is more suitable to be targeted for attacks.
Abstract:Federated Learning (FL) has gained significant popularity due to its effectiveness in training machine learning models across diverse sites without requiring direct data sharing. While various algorithms along with their optimization analyses have shown that FL with local updates is a communication-efficient distributed learning framework, the generalization performance of FL with local updates has received comparatively less attention. This lack of investigation can be attributed to the complex interplay between data heterogeneity and infrequent communication due to the local updates within the FL framework. This motivates us to investigate a fundamental question in FL: Can we quantify the impact of data heterogeneity and local updates on the generalization performance for FL as the learning process evolves? To this end, we conduct a comprehensive theoretical study of FL's generalization performance using a linear model as the first step, where the data heterogeneity is considered for both the stationary and online/non-stationary cases. By providing closed-form expressions of the model error, we rigorously quantify the impact of the number of the local updates (denoted as $K$) under three settings ($K=1$, $K<\infty$, and $K=\infty$) and show how the generalization performance evolves with the number of rounds $t$. Our investigation also provides a comprehensive understanding of how different configurations (including the number of model parameters $p$ and the number of training samples $n$) contribute to the overall generalization performance, thus shedding new insights (such as benign overfitting) for implementing FL over networks.
Abstract:One-shot voice conversion(VC) aims to change the timbre of any source speech to match that of the unseen target speaker with only one speech sample. Existing style transfer-based VC methods relied on speech representation disentanglement and suffered from accurately and independently encoding each speech component and recomposing back to converted speech effectively. To tackle this, we proposed Pureformer-VC, which utilizes Conformer blocks to build a disentangled encoder, and Zipformer blocks to build a style transfer decoder as the generator. In the decoder, we used effective styleformer blocks to integrate speaker characteristics into the generated speech effectively. The models used the generative VAE loss for encoding components and triplet loss for unsupervised discriminative training. We applied the styleformer method to Zipformer's shared weights for style transfer. The experimental results show that the proposed model achieves comparable subjective scores and exhibits improvements in objective metrics compared to existing methods in a one-shot voice conversion scenario.
Abstract:Machine anomalous sound detection (ASD) has emerged as one of the most promising applications in the Industrial Internet of Things (IIoT) due to its unprecedented efficacy in mitigating risks of malfunctions and promoting production efficiency. Previous works mainly investigated the machine ASD task under centralized settings. However, developing the ASD system under decentralized settings is crucial in practice, since the machine data are dispersed in various factories and the data should not be explicitly shared due to privacy concerns. To enable these factories to cooperatively develop a scalable ASD model while preserving their privacy, we propose a novel framework named CoopASD, where each factory trains an ASD model on its local dataset, and a central server aggregates these local models periodically. We employ a pre-trained model as the backbone of the ASD model to improve its robustness and develop specialized techniques to stabilize the model under a completely non-iid and domain shift setting. Compared with previous state-of-the-art (SOTA) models trained in centralized settings, CoopASD showcases competitive results with negligible degradation of 0.08%. We also conduct extensive ablation studies to demonstrate the effectiveness of CoopASD.
Abstract:Retrieval-augmented generation (RAG) methods encounter difficulties when addressing complex questions like multi-hop queries. While iterative retrieval methods improve performance by gathering additional information, current approaches often rely on multiple calls of large language models (LLMs). In this paper, we introduce EfficientRAG, an efficient retriever for multi-hop question answering. EfficientRAG iteratively generates new queries without the need for LLM calls at each iteration and filters out irrelevant information. Experimental results demonstrate that EfficientRAG surpasses existing RAG methods on three open-domain multi-hop question-answering datasets.
Abstract:It is time-saving to build a reading assistant for customer service representations (CSRs) when reading user manuals, especially information-rich ones. Current solutions don't fit the online custom service scenarios well due to the lack of attention to user questions and possible responses. Hence, we propose to develop a time-saving and careful reading assistant for CSRs, named CARE. It can help the CSRs quickly find proper responses from the user manuals via explicit clue chains. Specifically, each of the clue chains is formed by inferring over the user manuals, starting from the question clue aligned with the user question and ending at a possible response. To overcome the shortage of supervised data, we adopt the self-supervised strategy for model learning. The offline experiment shows that CARE is efficient in automatically inferring accurate responses from the user manual. The online experiment further demonstrates the superiority of CARE to reduce CSRs' reading burden and keep high service quality, in particular with >35% decrease in time spent and keeping a >0.75 ICC score.