Tencent, WeChat Pay
Abstract:The diffusion model has demonstrated superior performance in synthesizing diverse and high-quality images for text-guided image translation. However, there remains room for improvement in both the formulation of text prompts and the preservation of reference image content. First, variations in target text prompts can significantly influence the quality of the generated images, and it is often challenging for users to craft an optimal prompt that fully captures the content of the input image. Second, while existing models can introduce desired modifications to specific regions of the reference image, they frequently induce unintended alterations in areas that should remain unchanged. To address these challenges, we propose pix2pix-zeroCon, a zero-shot diffusion-based method that eliminates the need for additional training by leveraging patch-wise contrastive loss. Specifically, we automatically determine the editing direction in the text embedding space based on the reference image and target prompts. Furthermore, to ensure precise content and structural preservation in the edited image, we introduce cross-attention guiding loss and patch-wise contrastive loss between the generated and original image embeddings within a pre-trained diffusion model. Notably, our approach requires no additional training and operates directly on a pre-trained text-to-image diffusion model. Extensive experiments demonstrate that our method surpasses existing models in image-to-image translation, achieving enhanced fidelity and controllability.
Abstract:Sarcasm detection, as a crucial research direction in the field of Natural Language Processing (NLP), has attracted widespread attention. Traditional sarcasm detection tasks have typically focused on single-modal approaches (e.g., text), but due to the implicit and subtle nature of sarcasm, such methods often fail to yield satisfactory results. In recent years, researchers have shifted the focus of sarcasm detection to multi-modal approaches. However, effectively leveraging multi-modal information to accurately identify sarcastic content remains a challenge that warrants further exploration. Leveraging the powerful integrated processing capabilities of Multi-Modal Large Language Models (MLLMs) for various information sources, we propose an innovative multi-modal Commander-GPT framework. Inspired by military strategy, we first decompose the sarcasm detection task into six distinct sub-tasks. A central commander (decision-maker) then assigns the best-suited large language model to address each specific sub-task. Ultimately, the detection results from each model are aggregated to identify sarcasm. We conducted extensive experiments on MMSD and MMSD 2.0, utilizing four multi-modal large language models and six prompting strategies. Our experiments demonstrate that our approach achieves state-of-the-art performance, with a 19.3% improvement in F1 score, without necessitating fine-tuning or ground-truth rationales.
Abstract:3D texture swapping allows for the customization of 3D object textures, enabling efficient and versatile visual transformations in 3D editing. While no dedicated method exists, adapted 2D editing and text-driven 3D editing approaches can serve this purpose. However, 2D editing requires frame-by-frame manipulation, causing inconsistencies across views, while text-driven 3D editing struggles to preserve texture characteristics from reference images. To tackle these challenges, we introduce 3DSwapping, a 3D texture swapping method that integrates: 1) progressive generation, 2) view-consistency gradient guidance, and 3) prompt-tuned gradient guidance. To ensure view consistency, our progressive generation process starts by editing a single reference image and gradually propagates the edits to adjacent views. Our view-consistency gradient guidance further reinforces consistency by conditioning the generation model on feature differences between consistent and inconsistent outputs. To preserve texture characteristics, we introduce prompt-tuning-based gradient guidance, which learns a token that precisely captures the difference between the reference image and the 3D object. This token then guides the editing process, ensuring more consistent texture preservation across views. Overall, 3DSwapping integrates these novel strategies to achieve higher-fidelity texture transfer while preserving structural coherence across multiple viewpoints. Extensive qualitative and quantitative evaluations confirm that our three novel components enable convincing and effective 2D texture swapping for 3D objects. Code will be available upon acceptance.
Abstract:Most existing graph-based semi-supervised hyperspectral image classification methods rely on superpixel partitioning techniques. However, they suffer from misclassification of certain pixels due to inaccuracies in superpixel boundaries, \ie, the initial inaccuracies in superpixel partitioning limit overall classification performance. In this paper, we propose a novel graph-weighted contrastive learning approach that avoids the use of superpixel partitioning and directly employs neural networks to learn hyperspectral image representation. Furthermore, while many approaches require all graph nodes to be available during training, our approach supports mini-batch training by processing only a subset of nodes at a time, reducing computational complexity and improving generalization to unseen nodes. Experimental results on three widely-used datasets demonstrate the effectiveness of the proposed approach compared to baselines relying on superpixel partitioning.
Abstract:We present Step-Video-TI2V, a state-of-the-art text-driven image-to-video generation model with 30B parameters, capable of generating videos up to 102 frames based on both text and image inputs. We build Step-Video-TI2V-Eval as a new benchmark for the text-driven image-to-video task and compare Step-Video-TI2V with open-source and commercial TI2V engines using this dataset. Experimental results demonstrate the state-of-the-art performance of Step-Video-TI2V in the image-to-video generation task. Both Step-Video-TI2V and Step-Video-TI2V-Eval are available at https://github.com/stepfun-ai/Step-Video-TI2V.
Abstract:We present ReaderLM-v2, a compact 1.5 billion parameter language model designed for efficient web content extraction. Our model processes documents up to 512K tokens, transforming messy HTML into clean Markdown or JSON formats with high accuracy -- making it an ideal tool for grounding large language models. The model's effectiveness results from two key innovations: (1) a three-stage data synthesis pipeline that generates high quality, diverse training data by iteratively drafting, refining, and critiquing web content extraction; and (2) a unified training framework combining continuous pre-training with multi-objective optimization. Intensive evaluation demonstrates that ReaderLM-v2 outperforms GPT-4o-2024-08-06 and other larger models by 15-20\% on carefully curated benchmarks, particularly excelling at documents exceeding 100K tokens, while maintaining significantly lower computational requirements.
Abstract:EXplainable machine learning (XML) has recently emerged to address the mystery mechanisms of machine learning (ML) systems by interpreting their 'black box' results. Despite the development of various explanation methods, determining the most suitable XML method for specific ML contexts remains unclear, highlighting the need for effective evaluation of explanations. The evaluating capabilities of the Transformer-based large language model (LLM) present an opportunity to adopt LLM-as-a-Judge for assessing explanations. In this paper, we propose a workflow that integrates both LLM-based and human judges for evaluating explanations. We examine how LLM-based judges evaluate the quality of various explanation methods and compare their evaluation capabilities to those of human judges within an iris classification scenario, employing both subjective and objective metrics. We conclude that while LLM-based judges effectively assess the quality of explanations using subjective metrics, they are not yet sufficiently developed to replace human judges in this role.
Abstract:Large Language Models (LLMs) have made remarkable advances in role-playing dialogue agents, demonstrating their utility in character simulations. However, it remains challenging for these agents to balance character portrayal utility with content safety because this essential character simulation often comes with the risk of generating unsafe content. To address this issue, we first conduct a systematic exploration of the safety-utility trade-off across multiple LLMs. Our analysis reveals that risk scenarios created by villain characters and user queries (referred to as risk coupling) contribute to this trade-off. Building on this, we propose a novel Adaptive Dynamic Multi-Preference (ADMP) method, which dynamically adjusts safety-utility preferences based on the degree of risk coupling and guides the model to generate responses biased toward utility or safety. We further introduce Coupling Margin Sampling (CMS) into coupling detection to enhance the model's ability to handle high-risk scenarios. Experimental results demonstrate that our approach improves safety metrics while maintaining utility.
Abstract:Previous successful approaches to missing modality completion rely on carefully designed fusion techniques and extensive pre-training on complete data, which can limit their generalizability in out-of-domain (OOD) scenarios. In this study, we pose a new challenge: can we develop a missing modality completion model that is both resource-efficient and robust to OOD generalization? To address this, we present a training-free framework for missing modality completion that leverages large multimodal models (LMMs). Our approach, termed the "Knowledge Bridger", is modality-agnostic and integrates generation and ranking of missing modalities. By defining domain-specific priors, our method automatically extracts structured information from available modalities to construct knowledge graphs. These extracted graphs connect the missing modality generation and ranking modules through the LMM, resulting in high-quality imputations of missing modalities. Experimental results across both general and medical domains show that our approach consistently outperforms competing methods, including in OOD generalization. Additionally, our knowledge-driven generation and ranking techniques demonstrate superiority over variants that directly employ LMMs for generation and ranking, offering insights that may be valuable for applications in other domains.
Abstract:Despite great progress in multimodal tracking, these trackers remain too heavy and expensive for resource-constrained devices. To alleviate this problem, we propose LightFC-X, a family of lightweight convolutional RGB-X trackers that explores a unified convolutional architecture for lightweight multimodal tracking. Our core idea is to achieve lightweight cross-modal modeling and joint refinement of the multimodal features and the spatiotemporal appearance features of the target. Specifically, we propose a novel efficient cross-attention module (ECAM) and a novel spatiotemporal template aggregation module (STAM). The ECAM achieves lightweight cross-modal interaction of template-search area integrated feature with only 0.08M parameters. The STAM enhances the model's utilization of temporal information through module fine-tuning paradigm. Comprehensive experiments show that our LightFC-X achieves state-of-the-art performance and the optimal balance between parameters, performance, and speed. For example, LightFC-T-ST outperforms CMD by 4.3% and 5.7% in SR and PR on the LasHeR benchmark, which it achieves 2.6x reduction in parameters and 2.7x speedup. It runs in real-time on the CPU at a speed of 22 fps. The code is available at https://github.com/LiYunfengLYF/LightFC-X.