Abstract:Machine Learning (ML) has demonstrated its great potential on medical data analysis. Large datasets collected from diverse sources and settings are essential for ML models in healthcare to achieve better accuracy and generalizability. Sharing data across different healthcare institutions is challenging because of complex and varying privacy and regulatory requirements. Hence, it is hard but crucial to allow multiple parties to collaboratively train an ML model leveraging the private datasets available at each party without the need for direct sharing of those datasets or compromising the privacy of the datasets through collaboration. In this paper, we address this challenge by proposing Decentralized, Collaborative, and Privacy-preserving ML for Multi-Hospital Data (DeCaPH). It offers the following key benefits: (1) it allows different parties to collaboratively train an ML model without transferring their private datasets; (2) it safeguards patient privacy by limiting the potential privacy leakage arising from any contents shared across the parties during the training process; and (3) it facilitates the ML model training without relying on a centralized server. We demonstrate the generalizability and power of DeCaPH on three distinct tasks using real-world distributed medical datasets: patient mortality prediction using electronic health records, cell-type classification using single-cell human genomes, and pathology identification using chest radiology images. We demonstrate that the ML models trained with DeCaPH framework have an improved utility-privacy trade-off, showing it enables the models to have good performance while preserving the privacy of the training data points. In addition, the ML models trained with DeCaPH framework in general outperform those trained solely with the private datasets from individual parties, showing that DeCaPH enhances the model generalizability.
Abstract:Collaborative machine learning (ML) is widely used to enable institutions to learn better models from distributed data. While collaborative approaches to learning intuitively protect user data, they remain vulnerable to either the server, the clients, or both, deviating from the protocol. Indeed, because the protocol is asymmetric, a malicious server can abuse its power to reconstruct client data points. Conversely, malicious clients can corrupt learning with malicious updates. Thus, both clients and servers require a guarantee when the other cannot be trusted to fully cooperate. In this work, we propose a peer-to-peer (P2P) learning scheme that is secure against malicious servers and robust to malicious clients. Our core contribution is a generic framework that transforms any (compatible) algorithm for robust aggregation of model updates to the setting where servers and clients can act maliciously. Finally, we demonstrate the computational efficiency of our approach even with 1-million parameter models trained by 100s of peers on standard datasets.
Abstract:Proof-of-learning (PoL) proposes a model owner use machine learning training checkpoints to establish a proof of having expended the necessary compute for training. The authors of PoL forego cryptographic approaches and trade rigorous security guarantees for scalability to deep learning by being applicable to stochastic gradient descent and adaptive variants. This lack of formal analysis leaves the possibility that an attacker may be able to spoof a proof for a model they did not train. We contribute a formal analysis of why the PoL protocol cannot be formally (dis)proven to be robust against spoofing adversaries. To do so, we disentangle the two roles of proof verification in PoL: (a) efficiently determining if a proof is a valid gradient descent trajectory, and (b) establishing precedence by making it more expensive to craft a proof after training completes (i.e., spoofing). We show that efficient verification results in a tradeoff between accepting legitimate proofs and rejecting invalid proofs because deep learning necessarily involves noise. Without a precise analytical model for how this noise affects training, we cannot formally guarantee if a PoL verification algorithm is robust. Then, we demonstrate that establishing precedence robustly also reduces to an open problem in learning theory: spoofing a PoL post hoc training is akin to finding different trajectories with the same endpoint in non-convex learning. Yet, we do not rigorously know if priori knowledge of the final model weights helps discover such trajectories. We conclude that, until the aforementioned open problems are addressed, relying more heavily on cryptography is likely needed to formulate a new class of PoL protocols with formal robustness guarantees. In particular, this will help with establishing precedence. As a by-product of insights from our analysis, we also demonstrate two novel attacks against PoL.