Abstract:The rise of large language models (LLMs) has introduced new privacy challenges, particularly during inference where sensitive information in prompts may be exposed to proprietary LLM APIs. In this paper, we address the problem of formally protecting the sensitive information contained in a prompt while maintaining response quality. To this end, first, we introduce a cryptographically inspired notion of a prompt sanitizer which transforms an input prompt to protect its sensitive tokens. Second, we propose Pr$\epsilon\epsilon$mpt, a novel system that implements a prompt sanitizer. Pr$\epsilon\epsilon$mpt categorizes sensitive tokens into two types: (1) those where the LLM's response depends solely on the format (such as SSNs, credit card numbers), for which we use format-preserving encryption (FPE); and (2) those where the response depends on specific values, (such as age, salary) for which we apply metric differential privacy (mDP). Our evaluation demonstrates that Pr$\epsilon\epsilon$mpt is a practical method to achieve meaningful privacy guarantees, while maintaining high utility compared to unsanitized prompts, and outperforming prior methods
Abstract:It is common practice to outsource the training of machine learning models to cloud providers. Clients who do so gain from the cloud's economies of scale, but implicitly assume trust: the server should not deviate from the client's training procedure. A malicious server may, for instance, seek to insert backdoors in the model. Detecting a backdoored model without prior knowledge of both the backdoor attack and its accompanying trigger remains a challenging problem. In this paper, we show that a client with access to multiple cloud providers can replicate a subset of training steps across multiple servers to detect deviation from the training procedure in a similar manner to differential testing. Assuming some cloud-provided servers are benign, we identify malicious servers by the substantial difference between model updates required for backdooring and those resulting from clean training. Perhaps the strongest advantage of our approach is its suitability to clients that have limited-to-no local compute capability to perform training; we leverage the existence of multiple cloud providers to identify malicious updates without expensive human labeling or heavy computation. We demonstrate the capabilities of our approach on an outsourced supervised learning task where $50\%$ of the cloud providers insert their own backdoor; our approach is able to correctly identify $99.6\%$ of them. In essence, our approach is successful because it replaces the signature-based paradigm taken by existing approaches with an anomaly-based detection paradigm. Furthermore, our approach is robust to several attacks from adaptive adversaries utilizing knowledge of our detection scheme.
Abstract:We articulate fundamental mismatches between technical methods for machine unlearning in Generative AI, and documented aspirations for broader impact that these methods could have for law and policy. These aspirations are both numerous and varied, motivated by issues that pertain to privacy, copyright, safety, and more. For example, unlearning is often invoked as a solution for removing the effects of targeted information from a generative-AI model's parameters, e.g., a particular individual's personal data or in-copyright expression of Spiderman that was included in the model's training data. Unlearning is also proposed as a way to prevent a model from generating targeted types of information in its outputs, e.g., generations that closely resemble a particular individual's data or reflect the concept of "Spiderman." Both of these goals--the targeted removal of information from a model and the targeted suppression of information from a model's outputs--present various technical and substantive challenges. We provide a framework for thinking rigorously about these challenges, which enables us to be clear about why unlearning is not a general-purpose solution for circumscribing generative-AI model behavior in service of broader positive impact. We aim for conceptual clarity and to encourage more thoughtful communication among machine learning (ML), law, and policy experts who seek to develop and apply technical methods for compliance with policy objectives.
Abstract:Large language models (LLMs) are excellent few-shot learners. They can perform a wide variety of tasks purely based on natural language prompts provided to them. These prompts contain data of a specific downstream task -- often the private dataset of a party, e.g., a company that wants to leverage the LLM for their purposes. We show that deploying prompted models presents a significant privacy risk for the data used within the prompt by instantiating a highly effective membership inference attack. We also observe that the privacy risk of prompted models exceeds fine-tuned models at the same utility levels. After identifying the model's sensitivity to their prompts -- in the form of a significantly higher prediction confidence on the prompted data -- as a cause for the increased risk, we propose ensembling as a mitigation strategy. By aggregating over multiple different versions of a prompted model, membership inference risk can be decreased.
Abstract:A computational problem in biological reward-based learning is how credit assignment is performed in the nucleus accumbens (NAc). Much research suggests that NAc dopamine encodes temporal-difference (TD) errors for learning value predictions. However, dopamine is synchronously distributed in regionally homogeneous concentrations, which does not support explicit credit assignment (like used by backpropagation). It is unclear whether distributed errors alone are sufficient for synapses to make coordinated updates to learn complex, nonlinear reward-based learning tasks. We design a new deep Q-learning algorithm, Artificial Dopamine, to computationally demonstrate that synchronously distributed, per-layer TD errors may be sufficient to learn surprisingly complex RL tasks. We empirically evaluate our algorithm on MinAtar, the DeepMind Control Suite, and classic control tasks, and show it often achieves comparable performance to deep RL algorithms that use backpropagation.
Abstract:Large Language Models (LLMs) are vulnerable to jailbreaks$\unicode{x2013}$methods to elicit harmful or generally impermissible outputs. Safety measures are developed and assessed on their effectiveness at defending against jailbreak attacks, indicating a belief that safety is equivalent to robustness. We assert that current defense mechanisms, such as output filters and alignment fine-tuning, are, and will remain, fundamentally insufficient for ensuring model safety. These defenses fail to address risks arising from dual-intent queries and the ability to composite innocuous outputs to achieve harmful goals. To address this critical gap, we introduce an information-theoretic threat model called inferential adversaries who exploit impermissible information leakage from model outputs to achieve malicious goals. We distinguish these from commonly studied security adversaries who only seek to force victim models to generate specific impermissible outputs. We demonstrate the feasibility of automating inferential adversaries through question decomposition and response aggregation. To provide safety guarantees, we define an information censorship criterion for censorship mechanisms, bounding the leakage of impermissible information. We propose a defense mechanism which ensures this bound and reveal an intrinsic safety-utility trade-off. Our work provides the first theoretically grounded understanding of the requirements for releasing safe LLMs and the utility costs involved.
Abstract:Exact unlearning was first introduced as a privacy mechanism that allowed a user to retract their data from machine learning models on request. Shortly after, inexact schemes were proposed to mitigate the impractical costs associated with exact unlearning. More recently unlearning is often discussed as an approach for removal of impermissible knowledge i.e. knowledge that the model should not possess such as unlicensed copyrighted, inaccurate, or malicious information. The promise is that if the model does not have a certain malicious capability, then it cannot be used for the associated malicious purpose. In this paper we revisit the paradigm in which unlearning is used for in Large Language Models (LLMs) and highlight an underlying inconsistency arising from in-context learning. Unlearning can be an effective control mechanism for the training phase, yet it does not prevent the model from performing an impermissible act during inference. We introduce a concept of ununlearning, where unlearned knowledge gets reintroduced in-context, effectively rendering the model capable of behaving as if it knows the forgotten knowledge. As a result, we argue that content filtering for impermissible knowledge will be required and even exact unlearning schemes are not enough for effective content regulation. We discuss feasibility of ununlearning for modern LLMs and examine broader implications.
Abstract:The proliferation of large language models (LLMs) in the real world has come with a rise in copyright cases against companies for training their models on unlicensed data from the internet. Recent works have presented methods to identify if individual text sequences were members of the model's training data, known as membership inference attacks (MIAs). We demonstrate that the apparent success of these MIAs is confounded by selecting non-members (text sequences not used for training) belonging to a different distribution from the members (e.g., temporally shifted recent Wikipedia articles compared with ones used to train the model). This distribution shift makes membership inference appear successful. However, most MIA methods perform no better than random guessing when discriminating between members and non-members from the same distribution (e.g., in this case, the same period of time). Even when MIAs work, we find that different MIAs succeed at inferring membership of samples from different distributions. Instead, we propose a new dataset inference method to accurately identify the datasets used to train large language models. This paradigm sits realistically in the modern-day copyright landscape, where authors claim that an LLM is trained over multiple documents (such as a book) written by them, rather than one particular paragraph. While dataset inference shares many of the challenges of membership inference, we solve it by selectively combining the MIAs that provide positive signal for a given distribution, and aggregating them to perform a statistical test on a given dataset. Our approach successfully distinguishes the train and test sets of different subsets of the Pile with statistically significant p-values < 0.1, without any false positives.
Abstract:Machine learning models can be trained with formal privacy guarantees via differentially private optimizers such as DP-SGD. In this work, we study such privacy guarantees when the adversary only accesses the final model, i.e., intermediate model updates are not released. In the existing literature, this hidden state threat model exhibits a significant gap between the lower bound provided by empirical privacy auditing and the theoretical upper bound provided by privacy accounting. To challenge this gap, we propose to audit this threat model with adversaries that craft a gradient sequence to maximize the privacy loss of the final model without accessing intermediate models. We demonstrate experimentally how this approach consistently outperforms prior attempts at auditing the hidden state model. When the crafted gradient is inserted at every optimization step, our results imply that releasing only the final model does not amplify privacy, providing a novel negative result. On the other hand, when the crafted gradient is not inserted at every step, we show strong evidence that a privacy amplification phenomenon emerges in the general non-convex setting (albeit weaker than in convex regimes), suggesting that existing privacy upper bounds can be improved.
Abstract:Model-induced distribution shifts (MIDS) occur as previous model outputs pollute new model training sets over generations of models. This is known as model collapse in the case of generative models, and performative prediction or unfairness feedback loops for supervised models. When a model induces a distribution shift, it also encodes its mistakes, biases, and unfairnesses into the ground truth of its data ecosystem. We introduce a framework that allows us to track multiple MIDS over many generations, finding that they can lead to loss in performance, fairness, and minoritized group representation, even in initially unbiased datasets. Despite these negative consequences, we identify how models might be used for positive, intentional, interventions in their data ecosystems, providing redress for historical discrimination through a framework called algorithmic reparation (AR). We simulate AR interventions by curating representative training batches for stochastic gradient descent to demonstrate how AR can improve upon the unfairnesses of models and data ecosystems subject to other MIDS. Our work takes an important step towards identifying, mitigating, and taking accountability for the unfair feedback loops enabled by the idea that ML systems are inherently neutral and objective.