Element AI
Abstract:In this paper, we investigate the necessity of memorization in stochastic convex optimization (SCO) under $\ell_p$ geometries. Informally, we say a learning algorithm memorizes $m$ samples (or is $m$-traceable) if, by analyzing its output, it is possible to identify at least $m$ of its training samples. Our main results uncover a fundamental tradeoff between traceability and excess risk in SCO. For every $p\in [1,\infty)$, we establish the existence of a risk threshold below which any sample-efficient learner must memorize a \em{constant fraction} of its sample. For $p\in [1,2]$, this threshold coincides with best risk of differentially private (DP) algorithms, i.e., above this threshold, there are algorithms that do not memorize even a single sample. This establishes a sharp dichotomy between privacy and traceability for $p \in [1,2]$. For $p \in (2,\infty)$, this threshold instead gives novel lower bounds for DP learning, partially closing an open problem in this setup. En route of proving these results, we introduce a complexity notion we term \em{trace value} of a problem, which unifies privacy lower bounds and traceability results, and prove a sparse variant of the fingerprinting lemma.
Abstract:In continual learning, where task data arrives in a sequence, fine-tuning on later tasks will often lead to performance degradation on earlier tasks. This is especially pronounced when these tasks come from diverse domains. In this setting, how can we mitigate catastrophic forgetting of earlier tasks and retain what the model has learned with minimal computational expenses? Inspired by other merging methods, and L2-regression, we propose Sequential Fine-tuning with Averaging (SFA), a method that merges currently training models with earlier checkpoints during the course of training. SOTA approaches typically maintain a data buffer of past tasks or impose a penalty at each gradient step. In contrast, our method achieves comparable results without the need to store past data, or multiple copies of parameters for each gradient step. Furthermore, our method outperforms common merging techniques such as Task Arithmetic, TIES Merging, and WiSE-FT, as well as other penalty methods like L2 and Elastic Weight Consolidation. In turn, our method offers insight into the benefits of merging partially-trained models during training across both image and language domains.
Abstract:Efficiently exploring complex loss landscapes is key to the performance of deep neural networks. While momentum-based optimizers are widely used in state-of-the-art setups, classical momentum can still struggle with large, misaligned gradients, leading to oscillations. To address this, we propose Torque-Aware Momentum (TAM), which introduces a damping factor based on the angle between the new gradients and previous momentum, stabilizing the update direction during training. Empirical results show that TAM, which can be combined with both SGD and Adam, enhances exploration, handles distribution shifts more effectively, and improves generalization performance across various tasks, including image classification and large language model fine-tuning, when compared to classical momentum-based optimizers.
Abstract:Machine unlearning refers to removing the influence of a specified subset of training data from a machine learning model, efficiently, after it has already been trained. This is important for key applications, including making the model more accurate by removing outdated, mislabeled, or poisoned data. In this work, we study localized unlearning, where the unlearning algorithm operates on a (small) identified subset of parameters. Drawing inspiration from the memorization literature, we propose an improved localization strategy that yields strong results when paired with existing unlearning algorithms. We also propose a new unlearning algorithm, Deletion by Example Localization (DEL), that resets the parameters deemed-to-be most critical according to our localization strategy, and then finetunes them. Our extensive experiments on different datasets, forget sets and metrics reveal that DEL sets a new state-of-the-art for unlearning metrics, against both localized and full-parameter methods, while modifying a small subset of parameters, and outperforms the state-of-the-art localized unlearning in terms of test accuracy too.
Abstract:Machine unlearning aims to solve the problem of removing the influence of selected training examples from a learned model. Despite the increasing attention to this problem, it remains an open research question how to evaluate unlearning in large language models (LLMs), and what are the critical properties of the data to be unlearned that affect the quality and efficiency of unlearning. This work formalizes a metric to evaluate unlearning quality in generative models, and uses it to assess the trade-offs between unlearning quality and performance. We demonstrate that unlearning out-of-distribution examples requires more unlearning steps but overall presents a better trade-off overall. For in-distribution examples, however, we observe a rapid decay in performance as unlearning progresses. We further evaluate how example's memorization and difficulty affect unlearning under a classical gradient ascent-based approach.
Abstract:Model merging aims to efficiently combine the weights of multiple expert models, each trained on a specific task, into a single multi-task model, with strong performance across all tasks. When applied to all but the last layer of weights, existing methods -- such as Task Arithmetic, TIES-merging, and TALL mask merging -- work well to combine expert models obtained by fine-tuning a common foundation model, operating within a "local" neighborhood of the foundation model. This work explores the more challenging scenario of "non-local" merging, which we find arises when an expert model changes significantly during pretraining or where the expert models do not even share a common foundation model. We observe that standard merging techniques often fail to generalize effectively in this non-local setting, even when accounting for permutation symmetries using standard techniques. We identify that this failure is, in part, due to "variance collapse", a phenomenon identified also in the setting of linear mode connectivity by Jordan et al. (2023). To address this, we propose a multi-task technique to re-scale and shift the output activations of the merged model for each task, aligning its output statistics with those of the corresponding task-specific expert models. Our experiments demonstrate that this correction significantly improves the performance of various model merging approaches in non-local settings, providing a strong baseline for future research on this problem.
Abstract:Methods for knowledge editing and unlearning in large language models seek to edit or remove undesirable knowledge or capabilities without compromising general language modeling performance. This work investigates how mechanistic interpretability -- which, in part, aims to identify model components (circuits) associated to specific interpretable mechanisms that make up a model capability -- can improve the precision and effectiveness of editing and unlearning. We find a stark difference in unlearning and edit robustness when training components localized by different methods. We highlight an important distinction between methods that localize components based primarily on preserving outputs, and those finding high level mechanisms with predictable intermediate states. In particular, localizing edits/unlearning to components associated with the lookup-table mechanism for factual recall 1) leads to more robust edits/unlearning across different input/output formats, and 2) resists attempts to relearn the unwanted information, while also reducing unintended side effects compared to baselines, on both a sports facts dataset and the CounterFact dataset across multiple models. We also find that certain localized edits disrupt the latent knowledge in the model more than any other baselines, making unlearning more robust to various attacks.
Abstract:We present the findings of the first NeurIPS competition on unlearning, which sought to stimulate the development of novel algorithms and initiate discussions on formal and robust evaluation methodologies. The competition was highly successful: nearly 1,200 teams from across the world participated, and a wealth of novel, imaginative solutions with different characteristics were contributed. In this paper, we analyze top solutions and delve into discussions on benchmarking unlearning, which itself is a research problem. The evaluation methodology we developed for the competition measures forgetting quality according to a formal notion of unlearning, while incorporating model utility for a holistic evaluation. We analyze the effectiveness of different instantiations of this evaluation framework vis-a-vis the associated compute cost, and discuss implications for standardizing evaluation. We find that the ranking of leading methods remains stable under several variations of this framework, pointing to avenues for reducing the cost of evaluation. Overall, our findings indicate progress in unlearning, with top-performing competition entries surpassing existing algorithms under our evaluation framework. We analyze trade-offs made by different algorithms and strengths or weaknesses in terms of generalizability to new datasets, paving the way for advancing both benchmarking and algorithm development in this important area.
Abstract:As deep learning models are becoming larger and data-hungrier, there are growing ethical, legal and technical concerns over use of data: in practice, agreements on data use may change over time, rendering previously-used training data impermissible for training purposes. These issues have driven increased attention to machine unlearning: removing "the influence of" a subset of training data from a trained model. In this work, we advocate for a relaxed definition of unlearning that does not address privacy applications but targets a scenario where a data owner withdraws permission of use of their data for training purposes. In this context, we consider the important problem of \emph{transfer unlearning} where a pretrained model is transferred to a target dataset that contains some "non-static" data that may need to be unlearned in the future. We propose a new method that uses a mechanism for selecting relevant examples from an auxiliary "static" dataset, and finetunes on the selected data instead of "non-static" target data; addressing all unlearning requests ahead of time. We also adapt a recent relaxed definition of unlearning to our problem setting and demonstrate that our approach is an exact transfer unlearner according to it, while being highly efficient (amortized). We find that our method outperforms the gold standard "exact unlearning" (finetuning on only the "static" portion of the target dataset) on several datasets, especially for small "static" sets, sometimes approaching an upper bound for test accuracy. We also analyze factors influencing the accuracy boost obtained by data selection.
Abstract:In this work, we propose Salient Sparse Federated Learning (SSFL), a streamlined approach for sparse federated learning with efficient communication. SSFL identifies a sparse subnetwork prior to training, leveraging parameter saliency scores computed separately on local client data in non-IID scenarios, and then aggregated, to determine a global mask. Only the sparse model weights are communicated each round between the clients and the server. We validate SSFL's effectiveness using standard non-IID benchmarks, noting marked improvements in the sparsity--accuracy trade-offs. Finally, we deploy our method in a real-world federated learning framework and report improvement in communication time.