MILA
Abstract:3D Gaussian Splatting (GS) is one of the most promising novel 3D representations that has received great interest in computer graphics and computer vision. While various systems have introduced editing capabilities for 3D GS, such as those guided by text prompts, fine-grained control over deformation remains an open challenge. In this work, we present a novel sketch-guided 3D GS deformation system that allows users to intuitively modify the geometry of a 3D GS model by drawing a silhouette sketch from a single viewpoint. Our approach introduces a new deformation method that combines cage-based deformations with a variant of Neural Jacobian Fields, enabling precise, fine-grained control. Additionally, it leverages large-scale 2D diffusion priors and ControlNet to ensure the generated deformations are semantically plausible. Through a series of experiments, we demonstrate the effectiveness of our method and showcase its ability to animate static 3D GS models as one of its key applications.
Abstract:Text-conditioned video diffusion models have emerged as a powerful tool in the realm of video generation and editing. But their ability to capture the nuances of human movement remains under-explored. Indeed the ability of these models to faithfully model an array of text prompts can lead to a wide host of applications in human and character animation. In this work, we take initial steps to investigate whether these models can effectively guide the synthesis of realistic human body animations. Specifically we propose to synthesize human motion by deforming an SMPL-X body representation guided by Score distillation sampling (SDS) calculated using a video diffusion model. By analyzing the fidelity of the resulting animations, we gain insights into the extent to which we can obtain motion using publicly available text-to-video diffusion models using SDS. Our findings shed light on the potential and limitations of these models for generating diverse and plausible human motions, paving the way for further research in this exciting area.
Abstract:Spurious correlations are a major source of errors for machine learning models, in particular when aiming for group-level fairness. It has been recently shown that a powerful approach to combat spurious correlations is to re-train the last layer on a balanced validation dataset, isolating robust features for the predictor. However, key attributes can sometimes be discarded by neural networks towards the last layer. In this work, we thus consider retraining a classifier on a set of features derived from all layers. We utilize a recently proposed feature selection strategy to select unbiased features from all the layers. We observe this approach gives significant improvements in worst-group accuracy on several standard benchmarks.
Abstract:Neural network training can be accelerated when a learnable update rule is used in lieu of classic adaptive optimizers (e.g. Adam). However, learnable update rules can be costly and unstable to train and use. A simpler recently proposed approach to accelerate training is to use Adam for most of the optimization steps and periodically, only every few steps, nowcast (predict future) parameters. We improve this approach by Neuron interaction and Nowcasting (NiNo) networks. NiNo leverages neuron connectivity and graph neural networks to more accurately nowcast parameters by learning in a supervised way from a set of training trajectories over multiple tasks. We show that in some networks, such as Transformers, neuron connectivity is non-trivial. By accurately modeling neuron connectivity, we allow NiNo to accelerate Adam training by up to 50\% in vision and language tasks.
Abstract:Combining the predictions of multiple trained models through ensembling is generally a good way to improve accuracy by leveraging the different learned features of the models, however it comes with high computational and storage costs. Model fusion, the act of merging multiple models into one by combining their parameters reduces these costs but doesn't work as well in practice. Indeed, neural network loss landscapes are high-dimensional and non-convex and the minima found through learning are typically separated by high loss barriers. Numerous recent works have been focused on finding permutations matching one network features to the features of a second one, lowering the loss barrier on the linear path between them in parameter space. However, permutations are restrictive since they assume a one-to-one mapping between the different models' neurons exists. We propose a new model merging algorithm, CCA Merge, which is based on Canonical Correlation Analysis and aims to maximize the correlations between linear combinations of the model features. We show that our alignment method leads to better performances than past methods when averaging models trained on the same, or differing data splits. We also extend this analysis into the harder setting where more than 2 models are merged, and we find that CCA Merge works significantly better than past methods. Our code is publicly available at https://github.com/shoroi/align-n-merge
Abstract:Foundational vision-language models have shown impressive performance on various downstream tasks. Yet, there is still a pressing need to update these models later as new tasks or domains become available. Ongoing Continual Learning (CL) research provides techniques to overcome catastrophic forgetting of previous information when new knowledge is acquired. To date, CL techniques focus only on the supervised training sessions. This results in significant forgetting yielding inferior performance to even the prior model zero shot performance. In this work, we argue that test-time data hold great information that can be leveraged in a self supervised manner to refresh the model's memory of previous learned tasks and hence greatly reduce forgetting at no extra labelling cost. We study how unsupervised data can be employed online to improve models' performance on prior tasks upon encountering representative samples. We propose a simple yet effective student-teacher model with gradient based sparse parameters updates and show significant performance improvements and reduction in forgetting, which could alleviate the role of an offline episodic memory/experience replay buffer.
Abstract:Reversible architectures have been shown to be capable of performing on par with their non-reversible architectures, being applied in deep learning for memory savings and generative modeling. In this work, we show how reversible architectures can solve challenges in parallelizing deep model training. We introduce PETRA, a novel alternative to backpropagation for parallelizing gradient computations. PETRA facilitates effective model parallelism by enabling stages (i.e., a set of layers) to compute independently on different devices, while only needing to communicate activations and gradients between each other. By decoupling the forward and backward passes and keeping a single updated version of the parameters, the need for weight stashing is also removed. We develop a custom autograd-like training framework for PETRA, and we demonstrate its effectiveness on CIFAR-10, ImageNet32, and ImageNet, achieving competitive accuracies comparable to backpropagation using ResNet-18, ResNet-34, and ResNet-50 models.
Abstract:Training Large Language Models (LLMs) relies heavily on distributed implementations, employing multiple GPUs to compute stochastic gradients on model replicas in parallel. However, synchronizing gradients in data parallel settings induces a communication overhead increasing with the number of distributed workers, which can impede the efficiency gains of parallelization. To address this challenge, optimization algorithms reducing inter-worker communication have emerged, such as local optimization methods used in Federated Learning. While effective in minimizing communication overhead, these methods incur significant memory costs, hindering scalability: in addition to extra momentum variables, if communications are only allowed between multiple local optimization steps, then the optimizer's states cannot be sharded among workers. In response, we propose $\textbf{AC}$cumulate while $\textbf{CO}$mmunicate ($\texttt{ACCO}$), a memory-efficient optimization algorithm tailored for distributed training of LLMs. $\texttt{ACCO}$ allows to shard optimizer states across workers, overlaps gradient computations and communications to conceal communication costs, and accommodates heterogeneous hardware. Our method relies on a novel technique to mitigate the one-step delay inherent in parallel execution of gradient computations and communications, eliminating the need for warmup steps and aligning with the training dynamics of standard distributed optimization while converging faster in terms of wall-clock time. We demonstrate the effectiveness of $\texttt{ACCO}$ on several LLMs training and fine-tuning tasks.
Abstract:Understanding the inner working functionality of large-scale deep neural networks is challenging yet crucial in several high-stakes applications. Mechanistic inter- pretability is an emergent field that tackles this challenge, often by identifying human-understandable subgraphs in deep neural networks known as circuits. In vision-pretrained models, these subgraphs are usually interpreted by visualizing their node features through a popular technique called feature visualization. Recent works have analyzed the stability of different feature visualization types under the adversarial model manipulation framework. This paper starts by addressing limitations in existing works by proposing a novel attack called ProxPulse that simultaneously manipulates the two types of feature visualizations. Surprisingly, when analyzing these attacks under the umbrella of visual circuits, we find that visual circuits show some robustness to ProxPulse. We, therefore, introduce a new attack based on ProxPulse that unveils the manipulability of visual circuits, shedding light on their lack of robustness. The effectiveness of these attacks is validated using pre-trained AlexNet and ResNet-50 models on ImageNet.
Abstract:Image generation and editing have seen a great deal of advancements with the rise of large-scale diffusion models that allow user control of different modalities such as text, mask, depth maps, etc. However, controlled editing of videos still lags behind. Prior work in this area has focused on using 2D diffusion models to globally change the style of an existing video. On the other hand, in many practical applications, editing localized parts of the video is critical. In this work, we propose a method to edit videos using a pre-trained inpainting image diffusion model. We systematically redesign the forward path of the model by replacing the self-attention modules with an extended version of attention modules that creates frame-level dependencies. In this way, we ensure that the edited information will be consistent across all the video frames no matter what the shape and position of the masked area is. We qualitatively compare our results with state-of-the-art in terms of accuracy on several video editing tasks like object retargeting, object replacement, and object removal tasks. Simulations demonstrate the superior performance of the proposed strategy.