Abstract:Low-Rank Adaptation (LoRA) has emerged as a popular parameter-efficient fine-tuning (PEFT) method for Large Language Models (LLMs), yet it still incurs notable overhead and suffers from parameter interference in multi-task scenarios. We propose LoRA with Reduced Interference (LoRI), a simple yet effective approach that freezes the projection matrices $A$ as random projections and sparsifies the matrices $B$ using task-specific masks. This design substantially reduces the number of trainable parameters while maintaining strong task performance. Moreover, LoRI minimizes cross-task interference in adapter merging by leveraging the orthogonality between adapter subspaces, and supports continual learning by using sparsity to mitigate catastrophic forgetting. Extensive experiments across natural language understanding, mathematical reasoning, code generation, and safety alignment tasks demonstrate that LoRI outperforms full fine-tuning and existing PEFT methods, while using up to 95% fewer trainable parameters than LoRA. In multi-task experiments, LoRI enables effective adapter merging and continual learning with reduced cross-task interference. Code is available at: https://github.com/juzhengz/LoRI
Abstract:Multi-head attention is foundational to large language models (LLMs), enabling different heads to have diverse focus on relevant input tokens. However, learned behaviors like attention sinks, where the first token receives most attention despite limited semantic importance, challenge our understanding of multi-head attention. To analyze this phenomenon, we propose a new definition for attention heads dominated by attention sinks, known as dormant attention heads. We compare our definition to prior work in a model intervention study where we test whether dormant heads matter for inference by zeroing out the output of dormant attention heads. Using six pretrained models and five benchmark datasets, we find our definition to be more model and dataset-agnostic. Using our definition on most models, more than 4% of a model's attention heads can be zeroed while maintaining average accuracy, and zeroing more than 14% of a model's attention heads can keep accuracy to within 1% of the pretrained model's average accuracy. Further analysis reveals that dormant heads emerge early in pretraining and can transition between dormant and active states during pretraining. Additionally, we provide evidence that they depend on characteristics of the input text.
Abstract:Current techniques for privacy auditing of large language models (LLMs) have limited efficacy -- they rely on basic approaches to generate canaries which leads to weak membership inference attacks that in turn give loose lower bounds on the empirical privacy leakage. We develop canaries that are far more effective than those used in prior work under threat models that cover a range of realistic settings. We demonstrate through extensive experiments on multiple families of fine-tuned LLMs that our approach sets a new standard for detection of privacy leakage. For measuring the memorization rate of non-privately trained LLMs, our designed canaries surpass prior approaches. For example, on the Qwen2.5-0.5B model, our designed canaries achieve $49.6\%$ TPR at $1\%$ FPR, vastly surpassing the prior approach's $4.2\%$ TPR at $1\%$ FPR. Our method can be used to provide a privacy audit of $\varepsilon \approx 1$ for a model trained with theoretical $\varepsilon$ of 4. To the best of our knowledge, this is the first time that a privacy audit of LLM training has achieved nontrivial auditing success in the setting where the attacker cannot train shadow models, insert gradient canaries, or access the model at every iteration.
Abstract:Sparsely-activated Mixture of Experts (MoE) transformers are promising architectures for foundation models. Compared to dense transformers that require the same amount of floating point operations (FLOPs) per forward pass, MoEs benefit from improved sample efficiency at training time and achieve much stronger performance. Many closed-source and open-source frontier language models have thus adopted an MoE architecture. Naturally, practitioners will want to extend the capabilities of these models with large amounts of newly collected data without completely re-training them. Prior work has shown that a simple combination of replay and learning rate re-warming and re-decaying can enable the continual pre-training (CPT) of dense decoder-only transformers with minimal performance degradation compared to full re-training. In the case of decoder-only MoE transformers, however, it is unclear how the routing algorithm will impact continual pre-training performance: 1) do the MoE transformer's routers exacerbate forgetting relative to a dense model?; 2) do the routers maintain a balanced load on previous distributions after CPT?; 3) are the same strategies applied to dense models sufficient to continually pre-train MoE LLMs? In what follows, we conduct a large-scale (>2B parameter switch and DeepSeek MoE LLMs trained for 600B tokens) empirical study across four MoE transformers to answer these questions. Our results establish a surprising robustness to distribution shifts for both Sinkhorn-Balanced and Z-and-Aux-loss-balanced routing algorithms, even in MoEs continually pre-trained without replay. Moreover, we show that MoE LLMs maintain their sample efficiency (relative to a FLOP-matched dense model) during CPT and that they can match the performance of a fully re-trained MoE at a fraction of the cost.
Abstract:Scaling laws are typically fit using a family of models with a narrow range of frozen hyper-parameter choices. In this work we study scaling laws using a wide range of architecture and hyper-parameter choices, and highlight their impact on resulting prescriptions. As a primary artifact of our research, we release the Gemstones: the most comprehensive open-source scaling law dataset to date, consisting of over 4000 checkpoints from transformers with up to 2 billion parameters; these models have been trained with different learning rates, cooldown schedules, and architectural shapes. Our checkpoints enable more complex studies of scaling, such as a law that predicts language modeling performance as a function of model width and depth. By examining the various facets of our model suite, we find that the prescriptions of scaling laws can be highly sensitive to the experimental design process and the specific model checkpoints used during fitting. Code: https://github.com/mcleish7/gemstone-scaling-laws
Abstract:A key component of building safe and reliable language models is enabling the models to appropriately refuse to follow certain instructions or answer certain questions. We may want models to output refusal messages for various categories of user queries, for example, ill-posed questions, instructions for committing illegal acts, or queries which require information past the model's knowledge horizon. Engineering models that refuse to answer such questions is complicated by the fact that an individual may want their model to exhibit varying levels of sensitivity for refusing queries of various categories, and different users may want different refusal rates. The current default approach involves training multiple models with varying proportions of refusal messages from each category to achieve the desired refusal rates, which is computationally expensive and may require training a new model to accommodate each user's desired preference over refusal rates. To address these challenges, we propose refusal tokens, one such token for each refusal category or a single refusal token, which are prepended to the model's responses during training. We then show how to increase or decrease the probability of generating the refusal token for each category during inference to steer the model's refusal behavior. Refusal tokens enable controlling a single model's refusal rates without the need of any further fine-tuning, but only by selectively intervening during generation.
Abstract:Existing methods for adapting large language models (LLMs) to new tasks are not suited to multi-task adaptation because they modify all the model weights -- causing destructive interference between tasks. The resulting effects, such as catastrophic forgetting of earlier tasks, make it challenging to obtain good performance on multiple tasks at the same time. To mitigate this, we propose Lottery Ticket Adaptation (LoTA), a sparse adaptation method that identifies and optimizes only a sparse subnetwork of the model. We evaluate LoTA on a wide range of challenging tasks such as instruction following, reasoning, math, and summarization. LoTA obtains better performance than full fine-tuning and low-rank adaptation (LoRA), and maintains good performance even after training on other tasks -- thus, avoiding catastrophic forgetting. By extracting and fine-tuning over lottery tickets (or sparse task vectors), LoTA also enables model merging over highly dissimilar tasks. Our code is made publicly available at https://github.com/kiddyboots216/lottery-ticket-adaptation.
Abstract:The safety alignment of current Large Language Models (LLMs) is vulnerable. Relatively simple attacks, or even benign fine-tuning, can jailbreak aligned models. We argue that many of these vulnerabilities are related to a shared underlying issue: safety alignment can take shortcuts, wherein the alignment adapts a model's generative distribution primarily over only its very first few output tokens. We refer to this issue as shallow safety alignment. In this paper, we present case studies to explain why shallow safety alignment can exist and provide evidence that current aligned LLMs are subject to this issue. We also show how these findings help explain multiple recently discovered vulnerabilities in LLMs, including the susceptibility to adversarial suffix attacks, prefilling attacks, decoding parameter attacks, and fine-tuning attacks. Importantly, we discuss how this consolidated notion of shallow safety alignment sheds light on promising research directions for mitigating these vulnerabilities. For instance, we show that deepening the safety alignment beyond just the first few tokens can often meaningfully improve robustness against some common exploits. Finally, we design a regularized finetuning objective that makes the safety alignment more persistent against fine-tuning attacks by constraining updates on initial tokens. Overall, we advocate that future safety alignment should be made more than just a few tokens deep.
Abstract:When large language models are trained on private data, it can be a significant privacy risk for them to memorize and regurgitate sensitive information. In this work, we propose a new practical data extraction attack that we call "neural phishing". This attack enables an adversary to target and extract sensitive or personally identifiable information (PII), e.g., credit card numbers, from a model trained on user data with upwards of 10% attack success rates, at times, as high as 50%. Our attack assumes only that an adversary can insert as few as 10s of benign-appearing sentences into the training dataset using only vague priors on the structure of the user data.
Abstract:Fine-tuning large pretrained models on private datasets may run the risk of violating privacy. Differential privacy is a framework for mitigating privacy risks by enforcing algorithmic stability. DP-SGD enables training models with private data in a privacy-preserving manner, but raises new obstacles in the form of performance loss and significant engineering challenges. We introduce DP-ZO, a new method for fine-tuning large language models that preserves the privacy of training data by privatizing zeroth-order optimization. A key insight into the design of our method is that the direction of the gradient in SPSA, the zeroth-order algorithm we use, is always random and the only information that depends on private data is the step size, i.e., a scalar. Therefore, we only need to privatize the scalar step size, which is memory-efficient. DP-ZO, which can be instantiated with either Laplace or Gaussian noise, provides a strong privacy-utility trade-off across different tasks, and model sizes, under conservative privacy budgets. One noteworthy result is that DP-ZO exhibits just $1.86\%$ performance degradation due to privacy at $(1,10^{-5})$-DP when fine-tuning OPT-66B on 1000 training samples from SQuAD.