Abstract:The construction of large datasets for deep learning has raised concerns regarding unauthorized use of online data, leading to increased interest in protecting data from third-parties who want to use it for training. The Convolution-based Unlearnable DAtaset (CUDA) method aims to make data unlearnable by applying class-wise blurs to every image in the dataset so that neural networks learn relations between blur kernels and labels, as opposed to informative features for classifying clean data. In this work, we evaluate whether CUDA data remains unlearnable after image sharpening and frequency filtering, finding that this combination of simple transforms improves the utility of CUDA data for training. In particular, we observe a substantial increase in test accuracy over adversarial training for models trained with CUDA unlearnable data from CIFAR-10, CIFAR-100, and ImageNet-100. In training models to high accuracy using unlearnable data, we underscore the need for ongoing refinement in data poisoning techniques to ensure data privacy. Our method opens new avenues for enhancing the robustness of unlearnable datasets by highlighting that simple methods such as sharpening and frequency filtering are capable of breaking convolution-based unlearnable datasets.
Abstract:Data attribution methods play a crucial role in understanding machine learning models, providing insight into which training data points are most responsible for model outputs during deployment. However, current state-of-the-art approaches require a large ensemble of as many as 300,000 models to accurately attribute model predictions. These approaches therefore come at a high computational cost, are memory intensive, and are hard to scale to large models or datasets. In this work, we focus on a minimalist baseline, utilizing the feature space of a backbone pretrained via self-supervised learning to perform data attribution. Our method is model-agnostic and scales easily to large datasets. We show results on CIFAR-10 and ImageNet, achieving strong performance that rivals or outperforms state-of-the-art approaches at a fraction of the compute or memory cost. Contrary to prior work, our results reinforce the intuition that a model's prediction on one image is most impacted by visually similar training samples. Our approach serves as a simple and efficient baseline for data attribution on images.
Abstract:In an era of widespread web scraping, unlearnable dataset methods have the potential to protect data privacy by preventing deep neural networks from generalizing. But in addition to a number of practical limitations that make their use unlikely, we make a number of findings that call into question their ability to safeguard data. First, it is widely believed that neural networks trained on unlearnable datasets only learn shortcuts, simpler rules that are not useful for generalization. In contrast, we find that networks actually can learn useful features that can be reweighed for high test performance, suggesting that image privacy is not preserved. Unlearnable datasets are also believed to induce learning shortcuts through linear separability of added perturbations. We provide a counterexample, demonstrating that linear separability of perturbations is not a necessary condition. To emphasize why linearly separable perturbations should not be relied upon, we propose an orthogonal projection attack which allows learning from unlearnable datasets published in ICML 2021 and ICLR 2023. Our proposed attack is significantly less complex than recently proposed techniques.
Abstract:Recently developed text-to-image diffusion models make it easy to edit or create high-quality images. Their ease of use has raised concerns about the potential for malicious editing or deepfake creation. Imperceptible perturbations have been proposed as a means of protecting images from malicious editing by preventing diffusion models from generating realistic images. However, we find that the aforementioned perturbations are not robust to JPEG compression, which poses a major weakness because of the common usage and availability of JPEG. We discuss the importance of robustness for additive imperceptible perturbations and encourage alternative approaches to protect images against editing.
Abstract:The prevalence of data scraping from social media as a means to obtain datasets has led to growing concerns regarding unauthorized use of data. Data poisoning attacks have been proposed as a bulwark against scraping, as they make data "unlearnable" by adding small, imperceptible perturbations. Unfortunately, existing methods require knowledge of both the target architecture and the complete dataset so that a surrogate network can be trained, the parameters of which are used to generate the attack. In this work, we introduce autoregressive (AR) poisoning, a method that can generate poisoned data without access to the broader dataset. The proposed AR perturbations are generic, can be applied across different datasets, and can poison different architectures. Compared to existing unlearnable methods, our AR poisons are more resistant against common defenses such as adversarial training and strong data augmentations. Our analysis further provides insight into what makes an effective data poison.
Abstract:Imperceptible poisoning attacks on entire datasets have recently been touted as methods for protecting data privacy. However, among a number of defenses preventing the practical use of these techniques, early-stopping stands out as a simple, yet effective defense. To gauge poisons' vulnerability to early-stopping, we benchmark error-minimizing, error-maximizing, and synthetic poisons in terms of peak test accuracy over 100 epochs and make a number of surprising observations. First, we find that poisons that reach a low training loss faster have lower peak test accuracy. Second, we find that a current state-of-the-art error-maximizing poison is 7 times less effective when poison training is stopped at epoch 8. Third, we find that stronger, more transferable adversarial attacks do not make stronger poisons. We advocate for evaluating poisons in terms of peak test accuracy.
Abstract:The effects of adversarial training on semantic segmentation networks has not been thoroughly explored. While previous work has shown that adversarially-trained image classifiers can be used to perform image synthesis, we have yet to understand how best to leverage an adversarially-trained segmentation network to do the same. Using a simple optimizer, we demonstrate that adversarially-trained semantic segmentation networks can be used to perform image inpainting and generation. Our experiments demonstrate that adversarially-trained segmentation networks are more robust and indeed exhibit perceptually-aligned gradients which help in producing plausible image inpaintings. We seek to place additional weight behind the hypothesis that adversarially robust models exhibit gradients that are more perceptually-aligned with human vision. Through image synthesis, we argue that perceptually-aligned gradients promote a better understanding of a neural network's learned representations and aid in making neural networks more interpretable.
Abstract:In meta-learning approaches, it is difficult for a practitioner to make sense of what kind of representations the model employs. Without this ability, it can be difficult to both understand what the model knows as well as to make meaningful corrections. To address these challenges, we introduce AutoProtoNet, which builds interpretability into Prototypical Networks by training an embedding space suitable for reconstructing inputs, while remaining convenient for few-shot learning. We demonstrate how points in this embedding space can be visualized and used to understand class representations. We also devise a prototype refinement method, which allows a human to debug inadequate classification parameters. We use this debugging technique on a custom classification task and find that it leads to accuracy improvements on a validation set consisting of in-the-wild images. We advocate for interpretability in meta-learning approaches and show that there are interactive ways for a human to enhance meta-learning algorithms.