Abstract:Angiography imaging is a medical imaging technique that enhances the visibility of blood vessels within the body by using contrast agents. Angiographic images can effectively assist in the diagnosis of vascular diseases. However, contrast agents may bring extra radiation exposure which is harmful to patients with health risks. To mitigate these concerns, in this paper, we aim to automatically generate angiography from non-angiographic inputs, by leveraging and enhancing the inherent physical properties of vascular structures. Previous methods relying on 2D slice-based angiography synthesis struggle with maintaining continuity in 3D vascular structures and exhibit limited effectiveness across different imaging modalities. We propose VasTSD, a 3D vascular tree-state space diffusion model to synthesize angiography from 3D non-angiographic volumes, with a novel state space serialization approach that dynamically constructs vascular tree topologies, integrating these with a diffusion-based generative model to ensure the generation of anatomically continuous vasculature in 3D volumes. A pre-trained vision embedder is employed to construct vascular state space representations, enabling consistent modeling of vascular structures across multiple modalities. Extensive experiments on various angiographic datasets demonstrate the superiority of VasTSD over prior works, achieving enhanced continuity of blood vessels in synthesized angiographic synthesis for multiple modalities and anatomical regions.
Abstract:Online 3D open-vocabulary segmentation of a progressively reconstructed scene is both a critical and challenging task for embodied applications. With the success of visual foundation models (VFMs) in the image domain, leveraging 2D priors to address 3D online segmentation has become a prominent research focus. Since segmentation results provided by 2D priors often require spatial consistency to be lifted into final 3D segmentation, an efficient method for identifying spatial overlap among 2D masks is essential - yet existing methods rarely achieve this in real time, mainly limiting its use to offline approaches. To address this, we propose an efficient method that lifts 2D masks generated by VFMs into a unified 3D instance using a hashing technique. By employing voxel hashing for efficient 3D scene querying, our approach reduces the time complexity of costly spatial overlap queries from $O(n^2)$ to $O(n)$. Accurate spatial associations further enable 3D merging of 2D masks through simple similarity-based filtering in a zero-shot manner, making our approach more robust to incomplete and noisy data. Evaluated on the ScanNet and SceneNN benchmarks, our approach achieves state-of-the-art performance in online, open-vocabulary 3D instance segmentation with leading efficiency.
Abstract:Camouflaged Object Segmentation (COS) remains a challenging problem due to the subtle visual differences between camouflaged objects and backgrounds. Owing to the exceedingly limited visual cues available from visible spectrum, previous RGB single-modality approaches often struggle to achieve satisfactory results, prompting the exploration of multimodal data to enhance detection accuracy. In this work, we present UniCOS, a novel framework that effectively leverages diverse data modalities to improve segmentation performance. UniCOS comprises two key components: a multimodal segmentor, UniSEG, and a cross-modal knowledge learning module, UniLearner. UniSEG employs a state space fusion mechanism to integrate cross-modal features within a unified state space, enhancing contextual understanding and improving robustness to integration of heterogeneous data. Additionally, it includes a fusion-feedback mechanism that facilitate feature extraction. UniLearner exploits multimodal data unrelated to the COS task to improve the segmentation ability of the COS models by generating pseudo-modal content and cross-modal semantic associations. Extensive experiments demonstrate that UniSEG outperforms existing Multimodal COS (MCOS) segmentors, regardless of whether real or pseudo-multimodal COS data is available. Moreover, in scenarios where multimodal COS data is unavailable but multimodal non-COS data is accessible, UniLearner effectively exploits these data to enhance segmentation performance. Our code will be made publicly available on \href{https://github.com/cnyvfang/UniCOS}{GitHub}.
Abstract:A key component of building safe and reliable language models is enabling the models to appropriately refuse to follow certain instructions or answer certain questions. We may want models to output refusal messages for various categories of user queries, for example, ill-posed questions, instructions for committing illegal acts, or queries which require information past the model's knowledge horizon. Engineering models that refuse to answer such questions is complicated by the fact that an individual may want their model to exhibit varying levels of sensitivity for refusing queries of various categories, and different users may want different refusal rates. The current default approach involves training multiple models with varying proportions of refusal messages from each category to achieve the desired refusal rates, which is computationally expensive and may require training a new model to accommodate each user's desired preference over refusal rates. To address these challenges, we propose refusal tokens, one such token for each refusal category or a single refusal token, which are prepended to the model's responses during training. We then show how to increase or decrease the probability of generating the refusal token for each category during inference to steer the model's refusal behavior. Refusal tokens enable controlling a single model's refusal rates without the need of any further fine-tuning, but only by selectively intervening during generation.
Abstract:The recent Segment Anything Model (SAM) represents a significant breakthrough in scaling segmentation models, delivering strong performance across various downstream applications in the RGB modality. However, directly applying SAM to emerging visual modalities, such as depth and event data results in suboptimal performance in multi-modal segmentation tasks. In this paper, we make the first attempt to adapt SAM for multi-modal semantic segmentation by proposing a Mixture of Low-Rank Adaptation Experts (MoE-LoRA) tailored for different input visual modalities. By training only the MoE-LoRA layers while keeping SAM's weights frozen, SAM's strong generalization and segmentation capabilities can be preserved for downstream tasks. Specifically, to address cross-modal inconsistencies, we propose a novel MoE routing strategy that adaptively generates weighted features across modalities, enhancing multi-modal feature integration. Additionally, we incorporate multi-scale feature extraction and fusion by adapting SAM's segmentation head and introducing an auxiliary segmentation head to combine multi-scale features for improved segmentation performance effectively. Extensive experiments were conducted on three multi-modal benchmarks: DELIVER, MUSES, and MCubeS. The results consistently demonstrate that the proposed method significantly outperforms state-of-the-art approaches across diverse scenarios. Notably, under the particularly challenging condition of missing modalities, our approach exhibits a substantial performance gain, achieving an improvement of 32.15% compared to existing methods.
Abstract:Recent advances in Customized Concept Swapping (CCS) enable a text-to-image model to swap a concept in the source image with a customized target concept. However, the existing methods still face the challenges of inconsistency and inefficiency. They struggle to maintain consistency in both the foreground and background during concept swapping, especially when the shape difference is large between objects. Additionally, they either require time-consuming training processes or involve redundant calculations during inference. To tackle these issues, we introduce InstantSwap, a new CCS method that aims to handle sharp shape disparity at speed. Specifically, we first extract the bbox of the object in the source image automatically based on attention map analysis and leverage the bbox to achieve both foreground and background consistency. For background consistency, we remove the gradient outside the bbox during the swapping process so that the background is free from being modified. For foreground consistency, we employ a cross-attention mechanism to inject semantic information into both source and target concepts inside the box. This helps learn semantic-enhanced representations that encourage the swapping process to focus on the foreground objects. To improve swapping speed, we avoid computing gradients at each timestep but instead calculate them periodically to reduce the number of forward passes, which improves efficiency a lot with a little sacrifice on performance. Finally, we establish a benchmark dataset to facilitate comprehensive evaluation. Extensive evaluations demonstrate the superiority and versatility of InstantSwap. Project Page: https://instantswap.github.io/
Abstract:Reconstructing from multi-view images is a longstanding problem in 3D vision, where neural radiance fields (NeRFs) have shown great potential and get realistic rendered images of novel views. Currently, most NeRF methods either require accurate camera poses or a large number of input images, or even both. Reconstructing NeRF from few-view images without poses is challenging and highly ill-posed. To address this problem, we propose CAD-NeRF, a method reconstructed from less than 10 images without any known poses. Specifically, we build a mini library of several CAD models from ShapeNet and render them from many random views. Given sparse-view input images, we run a model and pose retrieval from the library, to get a model with similar shapes, serving as the density supervision and pose initializations. Here we propose a multi-view pose retrieval method to avoid pose conflicts among views, which is a new and unseen problem in uncalibrated NeRF methods. Then, the geometry of the object is trained by the CAD guidance. The deformation of the density field and camera poses are optimized jointly. Then texture and density are trained and fine-tuned as well. All training phases are in self-supervised manners. Comprehensive evaluations of synthetic and real images show that CAD-NeRF successfully learns accurate densities with a large deformation from retrieved CAD models, showing the generalization abilities.
Abstract:Radiance fields including NeRFs and 3D Gaussians demonstrate great potential in high-fidelity rendering and scene reconstruction, while they require a substantial number of posed images as inputs. COLMAP is frequently employed for preprocessing to estimate poses, while it necessitates a large number of feature matches to operate effectively, and it struggles with scenes characterized by sparse features, large baselines between images, or a limited number of input images. We aim to tackle few-view NeRF reconstruction using only 3 to 6 unposed scene images. Traditional methods often use calibration boards but they are not common in images. We propose a novel idea of utilizing everyday objects, commonly found in both images and real life, as "pose probes". The probe object is automatically segmented by SAM, whose shape is initialized from a cube. We apply a dual-branch volume rendering optimization (object NeRF and scene NeRF) to constrain the pose optimization and jointly refine the geometry. Specifically, object poses of two views are first estimated by PnP matching in an SDF representation, which serves as initial poses. PnP matching, requiring only a few features, is suitable for feature-sparse scenes. Additional views are incrementally incorporated to refine poses from preceding views. In experiments, PoseProbe achieves state-of-the-art performance in both pose estimation and novel view synthesis across multiple datasets. We demonstrate its effectiveness, particularly in few-view and large-baseline scenes where COLMAP struggles. In ablations, using different objects in a scene yields comparable performance. Our project page is available at: \href{https://zhirui-gao.github.io/PoseProbe.github.io/}{this https URL}
Abstract:The household rearrangement task involves spotting misplaced objects in a scene and accommodate them with proper places. It depends both on common-sense knowledge on the objective side and human user preference on the subjective side. In achieving such task, we propose to mine object functionality with user preference alignment directly from the scene itself, without relying on human intervention. To do so, we work with scene graph representation and propose LLM-enhanced scene graph learning which transforms the input scene graph into an affordance-enhanced graph (AEG) with information-enhanced nodes and newly discovered edges (relations). In AEG, the nodes corresponding to the receptacle objects are augmented with context-induced affordance which encodes what kind of carriable objects can be placed on it. New edges are discovered with newly discovered non-local relations. With AEG, we perform task planning for scene rearrangement by detecting misplaced carriables and determining a proper placement for each of them. We test our method by implementing a tiding robot in simulator and perform evaluation on a new benchmark we build. Extensive evaluations demonstrate that our method achieves state-of-the-art performance on misplacement detection and the following rearrangement planning.
Abstract:Low-level 3D representations, such as point clouds, meshes, NeRFs, and 3D Gaussians, are commonly used to represent 3D objects or scenes. However, humans usually perceive 3D objects or scenes at a higher level as a composition of parts or structures rather than points or voxels. Representing 3D as semantic parts can benefit further understanding and applications. We aim to solve part-aware 3D reconstruction, which parses objects or scenes into semantic parts. In this paper, we introduce a hybrid representation of superquadrics and 2D Gaussians, trying to dig 3D structural clues from multi-view image inputs. Accurate structured geometry reconstruction and high-quality rendering are achieved at the same time. We incorporate parametric superquadrics in mesh forms into 2D Gaussians by attaching Gaussian centers to faces in meshes. During the training, superquadrics parameters are iteratively optimized, and Gaussians are deformed accordingly, resulting in an efficient hybrid representation. On the one hand, this hybrid representation inherits the advantage of superquadrics to represent different shape primitives, supporting flexible part decomposition of scenes. On the other hand, 2D Gaussians are incorporated to model the complex texture and geometry details, ensuring high-quality rendering and geometry reconstruction. The reconstruction is fully unsupervised. We conduct extensive experiments on data from DTU and ShapeNet datasets, in which the method decomposes scenes into reasonable parts, outperforming existing state-of-the-art approaches.