Abstract:Camouflaged Object Segmentation (COS) remains a challenging problem due to the subtle visual differences between camouflaged objects and backgrounds. Owing to the exceedingly limited visual cues available from visible spectrum, previous RGB single-modality approaches often struggle to achieve satisfactory results, prompting the exploration of multimodal data to enhance detection accuracy. In this work, we present UniCOS, a novel framework that effectively leverages diverse data modalities to improve segmentation performance. UniCOS comprises two key components: a multimodal segmentor, UniSEG, and a cross-modal knowledge learning module, UniLearner. UniSEG employs a state space fusion mechanism to integrate cross-modal features within a unified state space, enhancing contextual understanding and improving robustness to integration of heterogeneous data. Additionally, it includes a fusion-feedback mechanism that facilitate feature extraction. UniLearner exploits multimodal data unrelated to the COS task to improve the segmentation ability of the COS models by generating pseudo-modal content and cross-modal semantic associations. Extensive experiments demonstrate that UniSEG outperforms existing Multimodal COS (MCOS) segmentors, regardless of whether real or pseudo-multimodal COS data is available. Moreover, in scenarios where multimodal COS data is unavailable but multimodal non-COS data is accessible, UniLearner effectively exploits these data to enhance segmentation performance. Our code will be made publicly available on \href{https://github.com/cnyvfang/UniCOS}{GitHub}.
Abstract:Recent advances in Customized Concept Swapping (CCS) enable a text-to-image model to swap a concept in the source image with a customized target concept. However, the existing methods still face the challenges of inconsistency and inefficiency. They struggle to maintain consistency in both the foreground and background during concept swapping, especially when the shape difference is large between objects. Additionally, they either require time-consuming training processes or involve redundant calculations during inference. To tackle these issues, we introduce InstantSwap, a new CCS method that aims to handle sharp shape disparity at speed. Specifically, we first extract the bbox of the object in the source image automatically based on attention map analysis and leverage the bbox to achieve both foreground and background consistency. For background consistency, we remove the gradient outside the bbox during the swapping process so that the background is free from being modified. For foreground consistency, we employ a cross-attention mechanism to inject semantic information into both source and target concepts inside the box. This helps learn semantic-enhanced representations that encourage the swapping process to focus on the foreground objects. To improve swapping speed, we avoid computing gradients at each timestep but instead calculate them periodically to reduce the number of forward passes, which improves efficiency a lot with a little sacrifice on performance. Finally, we establish a benchmark dataset to facilitate comprehensive evaluation. Extensive evaluations demonstrate the superiority and versatility of InstantSwap. Project Page: https://instantswap.github.io/