Abstract:Blind Face Restoration (BFR) addresses the challenge of reconstructing degraded low-quality (LQ) facial images into high-quality (HQ) outputs. Conventional approaches predominantly rely on learning feature representations from ground-truth (GT) data; however, inherent imperfections in GT datasets constrain restoration performance to the mean quality level of the training data, rather than attaining maximally attainable visual quality. To overcome this limitation, we propose a novel framework that incorporates an Image Quality Prior (IQP) derived from No-Reference Image Quality Assessment (NR-IQA) models to guide the restoration process toward optimal HQ reconstructions. Our methodology synergizes this IQP with a learned codebook prior through two critical innovations: (1) During codebook learning, we devise a dual-branch codebook architecture that disentangles feature extraction into universal structural components and HQ-specific attributes, ensuring comprehensive representation of both common and high-quality facial characteristics. (2) In the codebook lookup stage, we implement a quality-conditioned Transformer-based framework. NR-IQA-derived quality scores act as dynamic conditioning signals to steer restoration toward the highest feasible quality standard. This score-conditioned paradigm enables plug-and-play enhancement of existing BFR architectures without modifying the original structure. We also formulate a discrete representation-based quality optimization strategy that circumvents over-optimization artifacts prevalent in continuous latent space approaches. Extensive experiments demonstrate that our method outperforms state-of-the-art techniques across multiple benchmarks. Besides, our quality-conditioned framework demonstrates consistent performance improvements when integrated with prior BFR models. The code will be released.
Abstract:Camouflaged Object Segmentation (COS) remains a challenging problem due to the subtle visual differences between camouflaged objects and backgrounds. Owing to the exceedingly limited visual cues available from visible spectrum, previous RGB single-modality approaches often struggle to achieve satisfactory results, prompting the exploration of multimodal data to enhance detection accuracy. In this work, we present UniCOS, a novel framework that effectively leverages diverse data modalities to improve segmentation performance. UniCOS comprises two key components: a multimodal segmentor, UniSEG, and a cross-modal knowledge learning module, UniLearner. UniSEG employs a state space fusion mechanism to integrate cross-modal features within a unified state space, enhancing contextual understanding and improving robustness to integration of heterogeneous data. Additionally, it includes a fusion-feedback mechanism that facilitate feature extraction. UniLearner exploits multimodal data unrelated to the COS task to improve the segmentation ability of the COS models by generating pseudo-modal content and cross-modal semantic associations. Extensive experiments demonstrate that UniSEG outperforms existing Multimodal COS (MCOS) segmentors, regardless of whether real or pseudo-multimodal COS data is available. Moreover, in scenarios where multimodal COS data is unavailable but multimodal non-COS data is accessible, UniLearner effectively exploits these data to enhance segmentation performance. Our code will be made publicly available on \href{https://github.com/cnyvfang/UniCOS}{GitHub}.
Abstract:Existing concealed object segmentation (COS) methods frequently utilize reversible strategies to address uncertain regions. However, these approaches are typically restricted to the mask domain, leaving the potential of the RGB domain underexplored. To address this, we propose the Reversible Unfolding Network (RUN), which applies reversible strategies across both mask and RGB domains through a theoretically grounded framework, enabling accurate segmentation. RUN first formulates a novel COS model by incorporating an extra residual sparsity constraint to minimize segmentation uncertainties. The iterative optimization steps of the proposed model are then unfolded into a multistage network, with each step corresponding to a stage. Each stage of RUN consists of two reversible modules: the Segmentation-Oriented Foreground Separation (SOFS) module and the Reconstruction-Oriented Background Extraction (ROBE) module. SOFS applies the reversible strategy at the mask level and introduces Reversible State Space to capture non-local information. ROBE extends this to the RGB domain, employing a reconstruction network to address conflicting foreground and background regions identified as distortion-prone areas, which arise from their separate estimation by independent modules. As the stages progress, RUN gradually facilitates reversible modeling of foreground and background in both the mask and RGB domains, directing the network's attention to uncertain regions and mitigating false-positive and false-negative results. Extensive experiments demonstrate the superior performance of RUN and highlight the potential of unfolding-based frameworks for COS and other high-level vision tasks. We will release the code and models.
Abstract:Camouflaged Object Detection (COD) refers to the task of identifying and segmenting objects that blend seamlessly into their surroundings, posing a significant challenge for computer vision systems. In recent years, COD has garnered widespread attention due to its potential applications in surveillance, wildlife conservation, autonomous systems, and more. While several surveys on COD exist, they often have limitations in terms of the number and scope of papers covered, particularly regarding the rapid advancements made in the field since mid-2023. To address this void, we present the most comprehensive review of COD to date, encompassing both theoretical frameworks and practical contributions to the field. This paper explores various COD methods across four domains, including both image-level and video-level solutions, from the perspectives of traditional and deep learning approaches. We thoroughly investigate the correlations between COD and other camouflaged scenario methods, thereby laying the theoretical foundation for subsequent analyses. Beyond object-level detection, we also summarize extended methods for instance-level tasks, including camouflaged instance segmentation, counting, and ranking. Additionally, we provide an overview of commonly used benchmarks and evaluation metrics in COD tasks, conducting a comprehensive evaluation of deep learning-based techniques in both image and video domains, considering both qualitative and quantitative performance. Finally, we discuss the limitations of current COD models and propose 9 promising directions for future research, focusing on addressing inherent challenges and exploring novel, meaningful technologies. For those interested, a curated list of COD-related techniques, datasets, and additional resources can be found at https://github.com/ChunmingHe/awesome-concealed-object-segmentation
Abstract:This study addresses the Domain-Class Incremental Learning problem, a realistic but challenging continual learning scenario where both the domain distribution and target classes vary across tasks. To handle these diverse tasks, pre-trained Vision-Language Models (VLMs) are introduced for their strong generalizability. However, this incurs a new problem: the knowledge encoded in the pre-trained VLMs may be disturbed when adapting to new tasks, compromising their inherent zero-shot ability. Existing methods tackle it by tuning VLMs with knowledge distillation on extra datasets, which demands heavy computation overhead. To address this problem efficiently, we propose the Distribution-aware Interference-free Knowledge Integration (DIKI) framework, retaining pre-trained knowledge of VLMs from a perspective of avoiding information interference. Specifically, we design a fully residual mechanism to infuse newly learned knowledge into a frozen backbone, while introducing minimal adverse impacts on pre-trained knowledge. Besides, this residual property enables our distribution-aware integration calibration scheme, explicitly controlling the information implantation process for test data from unseen distributions. Experiments demonstrate that our DIKI surpasses the current state-of-the-art approach using only 0.86% of the trained parameters and requiring substantially less training time. Code is available at: https://github.com/lloongx/DIKI .
Abstract:Deep generative models have garnered significant attention in low-level vision tasks due to their generative capabilities. Among them, diffusion model-based solutions, characterized by a forward diffusion process and a reverse denoising process, have emerged as widely acclaimed for their ability to produce samples of superior quality and diversity. This ensures the generation of visually compelling results with intricate texture information. Despite their remarkable success, a noticeable gap exists in a comprehensive survey that amalgamates these pioneering diffusion model-based works and organizes the corresponding threads. This paper proposes the comprehensive review of diffusion model-based techniques. We present three generic diffusion modeling frameworks and explore their correlations with other deep generative models, establishing the theoretical foundation. Following this, we introduce a multi-perspective categorization of diffusion models, considering both the underlying framework and the target task. Additionally, we summarize extended diffusion models applied in other tasks, including medical, remote sensing, and video scenarios. Moreover, we provide an overview of commonly used benchmarks and evaluation metrics. We conduct a thorough evaluation, encompassing both performance and efficiency, of diffusion model-based techniques in three prominent tasks. Finally, we elucidate the limitations of current diffusion models and propose seven intriguing directions for future research. This comprehensive examination aims to facilitate a profound understanding of the landscape surrounding denoising diffusion models in the context of low-level vision tasks. A curated list of diffusion model-based techniques in over 20 low-level vision tasks can be found at https://github.com/ChunmingHe/awesome-diffusion-models-in-low-level-vision.
Abstract:Real-world Image Dehazing (RID) aims to alleviate haze-induced degradation in real-world settings. This task remains challenging due to the complexities in accurately modeling real haze distributions and the scarcity of paired real-world data. To address these challenges, we first introduce a cooperative unfolding network that jointly models atmospheric scattering and image scenes, effectively integrating physical knowledge into deep networks to restore haze-contaminated details. Additionally, we propose the first RID-oriented iterative mean-teacher framework, termed the Coherence-based Label Generator, to generate high-quality pseudo labels for network training. Specifically, we provide an optimal label pool to store the best pseudo-labels during network training, leveraging both global and local coherence to select high-quality candidates and assign weights to prioritize haze-free regions. We verify the effectiveness of our method, with experiments demonstrating that it achieves state-of-the-art performance on RID tasks. Code will be available at \url{https://github.com/cnyvfang/CORUN-Colabator}.
Abstract:Infrared and visible image fusion (IVIF) aims to preserve thermal radiation information from infrared images while integrating texture details from visible images, enabling the capture of important features and hidden details of subjects in complex scenes and disturbed environments. Consequently, IVIF offers distinct advantages in practical applications such as video surveillance, night navigation, and target recognition. However, prevailing methods often face challenges in simultaneously capturing thermal region features and detailed information due to the disparate characteristics of infrared and visible images. Consequently, fusion outcomes frequently entail a compromise between thermal target area information and texture details. In this study, we introduce a novel heterogeneous dual-discriminator generative adversarial network (HDDGAN) to address this issue. Specifically, the generator is structured as a multi-scale skip-connected structure, facilitating the extraction of essential features from different source images. To enhance the information representation ability of the fusion result, an attention mechanism is employed to construct the information fusion layer within the generator, leveraging the disparities between the source images. Moreover, recognizing the distinct learning requirements of information in infrared and visible images, we design two discriminators with differing structures. This approach aims to guide the model to learn salient information from infrared images while simultaneously capturing detailed information from visible images. Extensive experiments conducted on various public datasets demonstrate the superiority of our proposed HDDGAN over other state-of-the-art (SOTA) algorithms, highlighting its enhanced potential for practical applications.
Abstract:This paper introduces MultiBooth, a novel and efficient technique for multi-concept customization in image generation from text. Despite the significant advancements in customized generation methods, particularly with the success of diffusion models, existing methods often struggle with multi-concept scenarios due to low concept fidelity and high inference cost. MultiBooth addresses these issues by dividing the multi-concept generation process into two phases: a single-concept learning phase and a multi-concept integration phase. During the single-concept learning phase, we employ a multi-modal image encoder and an efficient concept encoding technique to learn a concise and discriminative representation for each concept. In the multi-concept integration phase, we use bounding boxes to define the generation area for each concept within the cross-attention map. This method enables the creation of individual concepts within their specified regions, thereby facilitating the formation of multi-concept images. This strategy not only improves concept fidelity but also reduces additional inference cost. MultiBooth surpasses various baselines in both qualitative and quantitative evaluations, showcasing its superior performance and computational efficiency. Project Page: https://multibooth.github.io/
Abstract:Concealed object segmentation (COS) is a challenging task that involves localizing and segmenting those concealed objects that are visually blended with their surrounding environments. Despite achieving remarkable success, existing COS segmenters still struggle to achieve complete segmentation results in extremely concealed scenarios. In this paper, we propose a Hierarchical Coherence Modeling (HCM) segmenter for COS, aiming to address this incomplete segmentation limitation. In specific, HCM promotes feature coherence by leveraging the intra-stage coherence and cross-stage coherence modules, exploring feature correlations at both the single-stage and contextual levels. Additionally, we introduce the reversible re-calibration decoder to detect previously undetected parts in low-confidence regions, resulting in further enhancing segmentation performance. Extensive experiments conducted on three COS tasks, including camouflaged object detection, polyp image segmentation, and transparent object detection, demonstrate the promising results achieved by the proposed HCM segmenter.