Abstract:SAM3D enables scalable, open-world 3D reconstruction from complex scenes, yet its deployment is hindered by prohibitive inference latency. In this work, we conduct the \textbf{first systematic investigation} into its inference dynamics, revealing that generic acceleration strategies are brittle in this context. We demonstrate that these failures stem from neglecting the pipeline's inherent multi-level \textbf{heterogeneity}: the kinematic distinctiveness between shape and layout, the intrinsic sparsity of texture refinement, and the spectral variance across geometries. To address this, we present \textbf{Fast-SAM3D}, a training-free framework that dynamically aligns computation with instantaneous generation complexity. Our approach integrates three heterogeneity-aware mechanisms: (1) \textit{Modality-Aware Step Caching} to decouple structural evolution from sensitive layout updates; (2) \textit{Joint Spatiotemporal Token Carving} to concentrate refinement on high-entropy regions; and (3) \textit{Spectral-Aware Token Aggregation} to adapt decoding resolution. Extensive experiments demonstrate that Fast-SAM3D delivers up to \textbf{2.67$\times$} end-to-end speedup with negligible fidelity loss, establishing a new Pareto frontier for efficient single-view 3D generation. Our code is released in https://github.com/wlfeng0509/Fast-SAM3D.
Abstract:Face fill-light enhancement (FFE) brightens underexposed faces by adding virtual fill light while keeping the original scene illumination and background unchanged. Most face relighting methods aim to reshape overall lighting, which can suppress the input illumination or modify the entire scene, leading to foreground-background inconsistency and mismatching practical FFE needs. To support scalable learning, we introduce LightYourFace-160K (LYF-160K), a large-scale paired dataset built with a physically consistent renderer that injects a disk-shaped area fill light controlled by six disentangled factors, producing 160K before-and-after pairs. We first pretrain a physics-aware lighting prompt (PALP) that embeds the 6D parameters into conditioning tokens, using an auxiliary planar-light reconstruction objective. Building on a pretrained diffusion backbone, we then train a fill-light diffusion (FiLitDiff), an efficient one-step model conditioned on physically grounded lighting codes, enabling controllable and high-fidelity fill lighting at low computational cost. Experiments on held-out paired sets demonstrate strong perceptual quality and competitive full-reference metrics, while better preserving background illumination. The dataset and model will be at https://github.com/gobunu/Light-Up-Your-Face.
Abstract:Existing methods for restoring degraded human-centric images often struggle with insufficient fidelity, particularly in human body restoration (HBR). Recent diffusion-based restoration methods commonly adapt pre-trained text-to-image diffusion models, where the variational autoencoder (VAE) can significantly bottleneck restoration fidelity. We propose LCUDiff, a stable one-step framework that upgrades a pre-trained latent diffusion model from the 4-channel latent space to the 16-channel latent space. For VAE fine-tuning, channel splitting distillation (CSD) is used to keep the first four channels aligned with pre-trained priors while allocating the additional channels to effectively encode high-frequency details. We further design prior-preserving adaptation (PPA) to smoothly bridge the mismatch between 4-channel diffusion backbones and the higher-dimensional 16-channel latent. In addition, we propose a decoder router (DeR) for per-sample decoder routing using restoration-quality score annotations, which improves visual quality across diverse conditions. Experiments on synthetic and real-world datasets show competitive results with higher fidelity and fewer artifacts under mild degradations, while preserving one-step efficiency. The code and model will be at https://github.com/gobunu/LCUDiff.
Abstract:One-Step Diffusion Models have demonstrated promising capability and fast inference in video super-resolution (VSR) for real-world. Nevertheless, the substantial model size and high computational cost of Diffusion Transformers (DiTs) limit downstream applications. While low-bit quantization is a common approach for model compression, the effectiveness of quantized models is challenged by the high dynamic range of input latent and diverse layer behaviors. To deal with these challenges, we introduce LSGQuant, a layer-sensitivity guided quantizing approach for one-step diffusion-based real-world VSR. Our method incorporates a Dynamic Range Adaptive Quantizer (DRAQ) to fit video token activations. Furthermore, we estimate layer sensitivity and implement a Variance-Oriented Layer Training Strategy (VOLTS) by analyzing layer-wise statistics in calibration. We also introduce Quantization-Aware Optimization (QAO) to jointly refine the quantized branch and a retained high-precision branch. Extensive experiments demonstrate that our method has nearly performance to origin model with full-precision and significantly exceeds existing quantization techniques. Code is available at: https://github.com/zhengchen1999/LSGQuant.
Abstract:Image demoiréing aims to remove structured moiré artifacts in recaptured imagery, where degradations are highly frequency-dependent and vary across scales and directions. While recent deep networks achieve high-quality restoration, their full-precision designs remain costly for deployment. Binarization offers an extreme compression regime by quantizing both activations and weights to 1-bit. Yet, it has been rarely studied for demoiréing and performs poorly when naively applied. In this work, we propose BinaryDemoire, a binarized demoiréing framework that explicitly accommodates the frequency structure of moiré degradations. First, we introduce a moiré-aware binary gate (MABG) that extracts lightweight frequency descriptors together with activation statistics. It predicts channel-wise gating coefficients to condition the aggregation of binary convolution responses. Second, we design a shuffle-grouped residual adapter (SGRA) that performs structured sparse shortcut alignment. It further integrates interleaved mixing to promote information exchange across different channel partitions. Extensive experiments on four benchmarks demonstrate that the proposed BinaryDemoire surpasses current binarization methods. Code: https://github.com/zhengchen1999/BinaryDemoire.
Abstract:Capturing display screens with mobile devices has become increasingly common, yet the resulting images often suffer from severe degradations caused by the coexistence of moiré patterns and flicker-banding, leading to significant visual quality degradation. Due to the strong coupling of these two artifacts in real imaging processes, existing methods designed for single degradations fail to generalize to such compound scenarios. In this paper, we present the first systematic study on joint removal of moiré patterns and flicker-banding in screen-captured images, and propose a unified restoration framework, named CLEAR. To support this task, we construct a large-scale dataset containing both moiré patterns and flicker-banding, and introduce an ISP-based flicker simulation pipeline to stabilize model training and expand the degradation distribution. Furthermore, we design a frequency-domain decomposition and re-composition module together with a trajectory alignment loss to enhance the modeling of compound artifacts. Extensive experiments demonstrate that the proposed method consistently. outperforms existing image restoration approaches across multiple evaluation metrics, validating its effectiveness in complex real-world scenarios.
Abstract:Recently, Diffusion Transformers (DiTs) have emerged in Real-World Image Super-Resolution (Real-ISR) to generate high-quality textures, yet their heavy inference burden hinders real-world deployment. While Post-Training Quantization (PTQ) is a promising solution for acceleration, existing methods in super-resolution mostly focus on U-Net architectures, whereas generic DiT quantization is typically designed for text-to-image tasks. Directly applying these methods to DiT-based super-resolution models leads to severe degradation of local textures. Therefore, we propose Q-DiT4SR, the first PTQ framework specifically tailored for DiT-based Real-ISR. We propose H-SVD, a hierarchical SVD that integrates a global low-rank branch with a local block-wise rank-1 branch under a matched parameter budget. We further propose Variance-aware Spatio-Temporal Mixed Precision: VaSMP allocates cross-layer weight bit-widths in a data-free manner based on rate-distortion theory, while VaTMP schedules intra-layer activation precision across diffusion timesteps via dynamic programming (DP) with minimal calibration. Experiments on multiple real-world datasets demonstrate that our Q-DiT4SR achieves SOTA performance under both W4A6 and W4A4 settings. Notably, the W4A4 quantization configuration reduces model size by 5.8$\times$ and computational operations by over 60$\times$. Our code and models will be available at https://github.com/xunzhang1128/Q-DiT4SR.
Abstract:Mixture-of-Experts(MoE) Vision-Language Models (VLMs) offer remarkable performance but incur prohibitive memory and computational costs, making compression essential. Post-Training Quantization (PTQ) is an effective training-free technique to address the massive memory and computation overhead. Existing quantization paradigms fall short as they are oblivious to two critical forms of heterogeneity: the inherent discrepancy between vision and language tokens, and the non-uniform contribution of different experts. To bridge this gap, we propose Visual Expert Quantization (VEQ), a dual-aware quantization framework designed to simultaneously accommodate cross-modal differences and heterogeneity between experts. Specifically, VEQ incorporates 1)Modality-expert-aware Quantization, which utilizes expert activation frequency to prioritize error minimization for pivotal experts, and 2)Modality-affinity-aware Quantization, which constructs an enhanced Hessian matrix by integrating token-expert affinity with modality information to guide the calibration process. Extensive experiments across diverse benchmarks verify that VEQ consistently outperforms state-of-the-art baselines. Specifically, under the W3A16 configuration, our method achieves significant average accuracy gains of 2.04\% on Kimi-VL and 3.09\% on Qwen3-VL compared to the previous SOTA quantization methods, demonstrating superior robustness across various multimodal tasks. Our code will be available at https://github.com/guangshuoqin/VEQ.
Abstract:Large language models (LLMs) deliver strong performance, but their high compute and memory costs make deployment difficult in resource-constrained scenarios. Weight-only post-training quantization (PTQ) is appealing, as it reduces memory usage and enables practical speedup without low-bit operators or specialized hardware. However, accuracy often degrades significantly in weight-only PTQ at sub-4-bit precision, and our analysis identifies two main causes: (1) down-projection matrices are a well-known quantization bottleneck, but maintaining their fidelity often requires extra bit-width; (2) weight quantization induces activation deviations, but effective correction strategies remain underexplored. To address these issues, we propose D$^2$Quant, a novel weight-only PTQ framework that improves quantization from both the weight and activation perspectives. On the weight side, we design a Dual-Scale Quantizer (DSQ) tailored to down-projection matrices, with an absorbable scaling factor that significantly improves accuracy without increasing the bit budget. On the activation side, we propose Deviation-Aware Correction (DAC), which incorporates a mean-shift correction within LayerNorm to mitigate quantization-induced activation distribution shifts. Extensive experiments across multiple LLM families and evaluation metrics show that D$^2$Quant delivers superior performance for weight-only PTQ at sub-4-bit precision. The code and models will be available at https://github.com/XIANGLONGYAN/D2Quant.
Abstract:Pansharpening is a significant image fusion task that fuses low-resolution multispectral images (LRMSI) and high-resolution panchromatic images (PAN) to obtain high-resolution multispectral images (HRMSI). The development of the diffusion models (DM) and the end-to-end models (E2E model) has greatly improved the frontier of pansharping. DM takes the multi-step diffusion to obtain an accurate estimation of the residual between LRMSI and HRMSI. However, the multi-step process takes large computational power and is time-consuming. As for E2E models, their performance is still limited by the lack of prior and simple structure. In this paper, we propose a novel four-stage training strategy to obtain a lightweight network Fose, which fuses one-step DM and an E2E model. We perform one-step distillation on an enhanced SOTA DM for pansharping to compress the inference process from 50 steps to only 1 step. Then we fuse the E2E model with one-step DM with lightweight ensemble blocks. Comprehensive experiments are conducted to demonstrate the significant improvement of the proposed Fose on three commonly used benchmarks. Moreover, we achieve a 7.42 speedup ratio compared to the baseline DM while achieving much better performance. The code and model are released at https://github.com/Kai-Liu001/Fose.