Abstract:Diffusion-based methods have achieved remarkable achievements in 2D image or 3D object generation, however, the generation of 3D scenes and even $360^{\circ}$ images remains constrained, due to the limited number of scene datasets, the complexity of 3D scenes themselves, and the difficulty of generating consistent multi-view images. To address these issues, we first establish a large-scale panoramic video-text dataset containing millions of consecutive panoramic keyframes with corresponding panoramic depths, camera poses, and text descriptions. Then, we propose a novel text-driven panoramic generation framework, termed DiffPano, to achieve scalable, consistent, and diverse panoramic scene generation. Specifically, benefiting from the powerful generative capabilities of stable diffusion, we fine-tune a single-view text-to-panorama diffusion model with LoRA on the established panoramic video-text dataset. We further design a spherical epipolar-aware multi-view diffusion model to ensure the multi-view consistency of the generated panoramic images. Extensive experiments demonstrate that DiffPano can generate scalable, consistent, and diverse panoramic images with given unseen text descriptions and camera poses.
Abstract:Goal hijacking is a type of adversarial attack on Large Language Models (LLMs) where the objective is to manipulate the model into producing a specific, predetermined output, regardless of the user's original input. In goal hijacking, an attacker typically appends a carefully crafted malicious suffix to the user's prompt, which coerces the model into ignoring the user's original input and generating the target response. In this paper, we introduce a novel goal hijacking attack method called Pseudo-Conversation Injection, which leverages the weaknesses of LLMs in role identification within conversation contexts. Specifically, we construct the suffix by fabricating responses from the LLM to the user's initial prompt, followed by a prompt for a malicious new task. This leads the model to perceive the initial prompt and fabricated response as a completed conversation, thereby executing the new, falsified prompt. Following this approach, we propose three Pseudo-Conversation construction strategies: Targeted Pseudo-Conversation, Universal Pseudo-Conversation, and Robust Pseudo-Conversation. These strategies are designed to achieve effective goal hijacking across various scenarios. Our experiments, conducted on two mainstream LLM platforms including ChatGPT and Qwen, demonstrate that our proposed method significantly outperforms existing approaches in terms of attack effectiveness.
Abstract:Recent advancements in character video synthesis still depend on extensive fine-tuning or complex 3D modeling processes, which can restrict accessibility and hinder real-time applicability. To address these challenges, we propose a simple yet effective tuning-free framework for character video synthesis, named MovieCharacter, designed to streamline the synthesis process while ensuring high-quality outcomes. Our framework decomposes the synthesis task into distinct, manageable modules: character segmentation and tracking, video object removal, character motion imitation, and video composition. This modular design not only facilitates flexible customization but also ensures that each component operates collaboratively to effectively meet user needs. By leveraging existing open-source models and integrating well-established techniques, MovieCharacter achieves impressive synthesis results without necessitating substantial resources or proprietary datasets. Experimental results demonstrate that our framework enhances the efficiency, accessibility, and adaptability of character video synthesis, paving the way for broader creative and interactive applications.
Abstract:Data science plays a critical role in clinical research, but it requires professionals with expertise in coding and medical data analysis. Large language models (LLMs) have shown great potential in supporting medical tasks and performing well in general coding tests. However, these tests do not assess LLMs' ability to handle data science tasks in medicine, nor do they explore their practical utility in clinical research. To address this, we developed a dataset consisting of 293 real-world data science coding tasks, based on 39 published clinical studies, covering 128 tasks in Python and 165 tasks in R. This dataset simulates realistic clinical research scenarios using patient data. Our findings reveal that cutting-edge LLMs struggle to generate perfect solutions, frequently failing to follow input instructions, understand target data, and adhere to standard analysis practices. Consequently, LLMs are not yet ready to fully automate data science tasks. We benchmarked advanced adaptation methods and found two to be particularly effective: chain-of-thought prompting, which provides a step-by-step plan for data analysis, which led to a 60% improvement in code accuracy; and self-reflection, enabling LLMs to iteratively refine their code, yielding a 38% accuracy improvement. Building on these insights, we developed a platform that integrates LLMs into the data science workflow for medical professionals. In a user study with five medical doctors, we found that while LLMs cannot fully automate coding tasks, they significantly streamline the programming process. We found that 80% of their submitted code solutions were incorporated from LLM-generated code, with up to 96% reuse in some cases. Our analysis highlights the potential of LLMs, when integrated into expert workflows, to enhance data science efficiency in clinical research.
Abstract:Retrieving gene functional networks from knowledge databases presents a challenge due to the mismatch between disease networks and subtype-specific variations. Current solutions, including statistical and deep learning methods, often fail to effectively integrate gene interaction knowledge from databases or explicitly learn subtype-specific interactions. To address this mismatch, we propose GeSubNet, which learns a unified representation capable of predicting gene interactions while distinguishing between different disease subtypes. Graphs generated by such representations can be considered subtype-specific networks. GeSubNet is a multi-step representation learning framework with three modules: First, a deep generative model learns distinct disease subtypes from patient gene expression profiles. Second, a graph neural network captures representations of prior gene networks from knowledge databases, ensuring accurate physical gene interactions. Finally, we integrate these two representations using an inference loss that leverages graph generation capabilities, conditioned on the patient separation loss, to refine subtype-specific information in the learned representation. GeSubNet consistently outperforms traditional methods, with average improvements of 30.6%, 21.0%, 20.1%, and 56.6% across four graph evaluation metrics, averaged over four cancer datasets. Particularly, we conduct a biological simulation experiment to assess how the behavior of selected genes from over 11,000 candidates affects subtypes or patient distributions. The results show that the generated network has the potential to identify subtype-specific genes with an 83% likelihood of impacting patient distribution shifts. The GeSubNet resource is available: https://anonymous.4open.science/r/GeSubNet/
Abstract:While end-to-end multi-channel electroencephalography (EEG) learning approaches have shown significant promise, their applicability is often constrained in neurological diagnostics, such as intracranial EEG resources. When provided with a single-channel EEG, how can we learn representations that are robust to multi-channels and scalable across varied tasks, such as seizure prediction? In this paper, we present SplitSEE, a structurally splittable framework designed for effective temporal-frequency representation learning in single-channel EEG. The key concept of SplitSEE is a self-supervised framework incorporating a deep clustering task. Given an EEG, we argue that the time and frequency domains are two distinct perspectives, and hence, learned representations should share the same cluster assignment. To this end, we first propose two domain-specific modules that independently learn domain-specific representation and address the temporal-frequency tradeoff issue in conventional spectrogram-based methods. Then, we introduce a novel clustering loss to measure the information similarity. This encourages representations from both domains to coherently describe the same input by assigning them a consistent cluster. SplitSEE leverages a pre-training-to-fine-tuning framework within a splittable architecture and has following properties: (a) Effectiveness: it learns representations solely from single-channel EEG but has even outperformed multi-channel baselines. (b) Robustness: it shows the capacity to adapt across different channels with low performance variance. Superior performance is also achieved with our collected clinical dataset. (c) Scalability: With just one fine-tuning epoch, SplitSEE achieves high and stable performance using partial model layers.
Abstract:Recent normalization-based methods have shown great success in tackling the distribution shift issue, facilitating non-stationary time series forecasting. Since these methods operate in the time domain, they may fail to fully capture the dynamic patterns that are more apparent in the frequency domain, leading to suboptimal results. This paper first theoretically analyzes how normalization methods affect frequency components. We prove that the current normalization methods that operate in the time domain uniformly scale non-zero frequencies, and thus, they struggle to determine components that contribute to more robust forecasting. Therefore, we propose FredNormer, which observes datasets from a frequency perspective and adaptively up-weights the key frequency components. To this end, FredNormer consists of two components: a statistical metric that normalizes the input samples based on their frequency stability and a learnable weighting layer that adjusts stability and introduces sample-specific variations. Notably, FredNormer is a plug-and-play module, which does not compromise the efficiency compared to existing normalization methods. Extensive experiments show that FredNormer improves the averaged MSE of backbone forecasting models by 33.3% and 55.3% on the ETTm2 dataset. Compared to the baseline normalization methods, FredNormer achieves 18 top-1 results and 6 top-2 results out of 28 settings.
Abstract:This paper proposes a prediction-based gradient compression method for distributed learning with event-triggered communication. Our goal is to reduce the amount of information transmitted from the distributed agents to the parameter server by exploiting temporal correlation in the local gradients. We use a linear predictor that \textit{combines past gradients to form a prediction of the current gradient}, with coefficients that are optimized by solving a least-square problem. In each iteration, every agent transmits the predictor coefficients to the server such that the predicted local gradient can be computed. The difference between the true local gradient and the predicted one, termed the \textit{prediction residual, is only transmitted when its norm is above some threshold.} When this additional communication step is omitted, the server uses the prediction as the estimated gradient. This proposed design shows notable performance gains compared to existing methods in the literature, achieving convergence with reduced communication costs.
Abstract:Bounded rational agents often make decisions by evaluating a finite selection of choices, typically derived from a reference point termed the $`$default policy,' based on previous experience. However, the inherent rigidity of the static default policy presents significant challenges for agents when operating in unknown environment, that are not included in agent's prior knowledge. In this work, we introduce a context-generative default policy that leverages the region observed by the robot to predict unobserved part of the environment, thereby enabling the robot to adaptively adjust its default policy based on both the actual observed map and the $\textit{imagined}$ unobserved map. Furthermore, the adaptive nature of the bounded rationality framework enables the robot to manage unreliable or incorrect imaginations by selectively sampling a few trajectories in the vicinity of the default policy. Our approach utilizes a diffusion model for map prediction and a sampling-based planning with B-spline trajectory optimization to generate the default policy. Extensive evaluations reveal that the context-generative policy outperforms the baseline methods in identifying and avoiding unseen obstacles. Additionally, real-world experiments conducted with the Crazyflie drones demonstrate the adaptability of our proposed method, even when acting in environments outside the domain of the training distribution.
Abstract:Machine learning has shown great potential in the field of cancer multi-omics studies, offering incredible opportunities for advancing precision medicine. However, the challenges associated with dataset curation and task formulation pose significant hurdles, especially for researchers lacking a biomedical background. Here, we introduce the CMOB, the first large-scale cancer multi-omics benchmark integrates the TCGA platform, making data resources accessible and usable for machine learning researchers without significant preparation and expertise.To date, CMOB includes a collection of 20 cancer multi-omics datasets covering 32 cancers, accompanied by a systematic data processing pipeline. CMOB provides well-processed dataset versions to support 20 meaningful tasks in four studies, with a collection of benchmarks. We also integrate CMOB with two complementary resources and various biological tools to explore broader research avenues.All resources are open-accessible with user-friendly and compatible integration scripts that enable non-experts to easily incorporate this complementary information for various tasks. We conduct extensive experiments on selected datasets to offer recommendations on suitable machine learning baselines for specific applications. Through CMOB, we aim to facilitate algorithmic advances and hasten the development, validation, and clinical translation of machine-learning models for personalized cancer treatments. CMOB is available on GitHub (\url{https://github.com/chenzRG/Cancer-Multi-Omics-Benchmark}).