Abstract:We introduce MotionRL, the first approach to utilize Multi-Reward Reinforcement Learning (RL) for optimizing text-to-motion generation tasks and aligning them with human preferences. Previous works focused on improving numerical performance metrics on the given datasets, often neglecting the variability and subjectivity of human feedback. In contrast, our novel approach uses reinforcement learning to fine-tune the motion generator based on human preferences prior knowledge of the human perception model, allowing it to generate motions that better align human preferences. In addition, MotionRL introduces a novel multi-objective optimization strategy to approximate Pareto optimality between text adherence, motion quality, and human preferences. Extensive experiments and user studies demonstrate that MotionRL not only allows control over the generated results across different objectives but also significantly enhances performance across these metrics compared to other algorithms.
Abstract:Online vectorized High-Definition (HD) map construction is crucial for subsequent prediction and planning tasks in autonomous driving. Following MapTR paradigm, recent works have made noteworthy achievements. However, reference points are randomly initialized in mainstream methods, leading to unstable matching between predictions and ground truth. To address this issue, we introduce PriorMapNet to enhance online vectorized HD map construction with priors. We propose the PPS-Decoder, which provides reference points with position and structure priors. Fitted from the map elements in the dataset, prior reference points lower the learning difficulty and achieve stable matching. Furthermore, we propose the PF-Encoder to enhance the image-to-BEV transformation with BEV feature priors. Besides, we propose the DMD cross-attention, which decouples cross-attention along multi-scale and multi-sample respectively to achieve efficiency. Our proposed PriorMapNet achieves state-of-the-art performance in the online vectorized HD map construction task on nuScenes and Argoverse2 datasets. The code will be released publicly soon.
Abstract:Large language models (LLMs), such as GPT series models, have received substantial attention due to their impressive capabilities for generating and understanding human-level language. More recently, LLMs have emerged as an innovative and powerful adjunct in the medical field, transforming traditional practices and heralding a new era of enhanced healthcare services. This survey provides a comprehensive overview of Medical Large Language Models (Med-LLMs), outlining their evolution from general to the medical-specific domain (i.e, Technology and Application), as well as their transformative impact on healthcare (e.g., Trustworthiness and Safety). Concretely, starting from the fundamental history and technology of LLMs, we first delve into the progressive adaptation and refinements of general LLM models in the medical domain, especially emphasizing the advanced algorithms that boost the LLMs' performance in handling complicated medical environments, including clinical reasoning, knowledge graph, retrieval-augmented generation, human alignment, and multi-modal learning. Secondly, we explore the extensive applications of Med-LLMs across domains such as clinical decision support, report generation, and medical education, illustrating their potential to streamline healthcare services and augment patient outcomes. Finally, recognizing the imperative and responsible innovation, we discuss the challenges of ensuring fairness, accountability, privacy, and robustness in Med-LLMs applications. Finally, we conduct a concise discussion for anticipating possible future trajectories of Med-LLMs, identifying avenues for the prudent expansion of Med-LLMs. By consolidating above-mentioned insights, this review seeks to provide a comprehensive investigation of the potential strengths and limitations of Med-LLMs for professionals and researchers, ensuring a responsible landscape in the healthcare setting.
Abstract:Text-driven human motion generation, as one of the vital tasks in computer-aided content creation, has recently attracted increasing attention. While pioneering research has largely focused on improving numerical performance metrics on given datasets, practical applications reveal a common challenge: existing methods often overfit specific motion expressions in the training data, hindering their ability to generalize to novel descriptions like unseen combinations of motions. This limitation restricts their broader applicability. We argue that the aforementioned problem primarily arises from the scarcity of available motion-text pairs, given the many-to-many nature of text-driven motion generation. To tackle this problem, we formulate text-to-motion generation as a Markov decision process and present \textbf{InstructMotion}, which incorporate the trail and error paradigm in reinforcement learning for generalizable human motion generation. Leveraging contrastive pre-trained text and motion encoders, we delve into optimizing reward design to enable InstructMotion to operate effectively on both paired data, enhancing global semantic level text-motion alignment, and synthetic text-only data, facilitating better generalization to novel prompts without the need for ground-truth motion supervision. Extensive experiments on prevalent benchmarks and also our synthesized unpaired dataset demonstrate that the proposed InstructMotion achieves outstanding performance both quantitatively and qualitatively.
Abstract:Recommendation systems rely on historical clicks to learn user interests and provide appropriate items. However, current studies tend to treat clicks equally, which may ignore the assorted intensities of user interests in different clicks. In this paper, we aim to achieve multi-granularity Click confidence Learning via Self-Distillation in recommendation (CLSD). Due to the lack of supervised signals in click confidence, we first apply self-supervised learning to obtain click confidence scores via a global self-distillation method. After that, we define a local confidence function to adapt confidence scores at the user group level, since the confidence distributions can be varied among user groups. With the combination of multi-granularity confidence learning, we can distinguish the quality of clicks and model user interests more accurately without involving extra data and model structures. The significant improvements over different backbones on industrial offline and online experiments in a real-world recommender system prove the effectiveness of our model. Recently, CLSD has been deployed on a large-scale recommender system, affecting over 400 million users.
Abstract:Fish tracking plays a vital role in understanding fish behavior and ecology. However, existing tracking methods face challenges in accuracy and robustness dues to morphological change of fish, occlusion and complex environment. This paper proposes FishMOT(Multiple Object Tracking for Fish), a novel fish tracking approach combining object detection and IoU matching, including basic module, interaction module and refind module. Wherein, a basic module performs target association based on IoU of detection boxes between successive frames to deal with morphological change of fish; an interaction module combines IoU of detection boxes and IoU of fish entity to handle occlusions; a refind module use spatio-temporal information uses spatio-temporal information to overcome the tracking failure resulting from the missed detection by the detector under complex environment. FishMOT reduces the computational complexity and memory consumption since it does not require complex feature extraction or identity assignment per fish, and does not need Kalman filter to predict the detection boxes of successive frame. Experimental results demonstrate FishMOT outperforms state-of-the-art multi-object trackers and specialized fish tracking tools in terms of MOTA, accuracy, computation time, memory consumption, etc.. Furthermore, the method exhibits excellent robustness and generalizability for varying environments and fish numbers. The simplified workflow and strong performance make FishMOT as a highly effective fish tracking approach. The source codes and pre-trained models are available at: https://github.com/gakkistar/FishMOT
Abstract:Personalized recommendation relies on user historical behaviors to provide user-interested items, and thus seriously struggles with the data sparsity issue. A powerful positive item augmentation is beneficial to address the sparsity issue, while few works could jointly consider both the accuracy and diversity of these augmented training labels. In this work, we propose a novel model-agnostic Diversified self-distillation guided positive augmentation (DivSPA) for accurate and diverse positive item augmentations. Specifically, DivSPA first conducts three types of retrieval strategies to collect high-quality and diverse positive item candidates according to users' overall interests, short-term intentions, and similar users. Next, a self-distillation module is conducted to double-check and rerank these candidates as the final positive augmentations. Extensive offline and online evaluations verify the effectiveness of our proposed DivSPA on both accuracy and diversity. DivSPA is simple and effective, which could be conveniently adapted to other base models and systems. Currently, DivSPA has been deployed on multiple widely-used real-world recommender systems.
Abstract:We present a comprehensive study of the PELICAN machine learning algorithm architecture in the context of both tagging (classification) and reconstructing (regression) Lorentz-boosted top quarks, including the difficult task of specifically identifying and measuring the $W$-boson inside the dense environment of the boosted hadronic final state. PELICAN is a novel permutation equivariant and Lorentz invariant or covariant aggregator network designed to overcome common limitations found in architectures applied to particle physics problems. Compared to many approaches that use non-specialized architectures that neglect underlying physics principles and require very large numbers of parameters, PELICAN employs a fundamentally symmetry group-based architecture that demonstrates benefits in terms of reduced complexity, increased interpretability, and raw performance. When tested on the standard task of Lorentz-boosted top quark tagging, PELICAN outperforms existing competitors with much lower model complexity and high sample efficiency. On the less common and more complex task of four-momentum regression, PELICAN also outperforms hand-crafted algorithms. We discuss the implications of symmetry-restricted architectures for the wider field of machine learning for physics.
Abstract:Sequential recommendation models are primarily optimized to distinguish positive samples from negative ones during training in which negative sampling serves as an essential component in learning the evolving user preferences through historical records. Except for randomly sampling negative samples from a uniformly distributed subset, many delicate methods have been proposed to mine negative samples with high quality. However, due to the inherent randomness of negative sampling, false negative samples are inevitably collected in model training. Current strategies mainly focus on removing such false negative samples, which leads to overlooking potential user interests, lack of recommendation diversity, less model robustness, and suffering from exposure bias. To this end, we propose a novel method that can Utilize False Negative samples for sequential Recommendation (UFNRec) to improve model performance. We first devise a simple strategy to extract false negative samples and then transfer these samples to positive samples in the following training process. Furthermore, we construct a teacher model to provide soft labels for false negative samples and design a consistency loss to regularize the predictions of these samples from the student model and the teacher model. To the best of our knowledge, this is the first work to utilize false negative samples instead of simply removing them for the sequential recommendation. Experiments on three benchmark public datasets are conducted using three widely applied SOTA models. The experiment results demonstrate that our proposed UFNRec can effectively draw information from false negative samples and further improve the performance of SOTA models. The code is available at https://github.com/UFNRec-code/UFNRec.
Abstract:Depth estimation is one of the most essential problems for light field applications. In EPI-based methods, the slope computation usually suffers low accuracy due to the discretization error and low angular resolution. In addition, recent methods work well in most regions but often struggle with blurry edges over occluded regions and ambiguity over texture-less regions. To address these challenging issues, we first propose the stitched-EPI and half-stitched-EPI algorithms for non-occluded and occluded regions, respectively. The algorithms improve slope computation by shifting and concatenating lines in different EPIs but related to the same point in 3D scene, while the half-stitched-EPI only uses non-occluded part of lines. Combined with the joint photo-consistency cost proposed by us, the more accurate and robust depth map can be obtained in both occluded and non-occluded regions. Furthermore, to improve the depth estimation in texture-less regions, we propose a depth propagation strategy that determines their depth from the edge to interior, from accurate regions to coarse regions. Experimental and ablation results demonstrate that the proposed method achieves accurate and robust depth maps in all regions effectively.