Abstract:Physics-informed neural networks (PINNs) integrate fundamental physical principles with advanced data-driven techniques, driving significant advancements in scientific computing. However, PINNs face persistent challenges with stiffness in gradient flow, which limits their predictive capabilities. This paper presents an improved PINN (I-PINN) to mitigate gradient-related failures. The core of I-PINN is to combine the respective strengths of neural networks with an improved architecture and adaptive weights containingupper bounds. The capability to enhance accuracy by at least one order of magnitude and accelerate convergence, without introducing extra computational complexity relative to the baseline model, is achieved by I-PINN. Numerical experiments with a variety of benchmarks illustrate the improved accuracy and generalization of I-PINN. The supporting data and code are accessible at https://github.com/PanChengN/I-PINN.git, enabling broader research engagement.
Abstract:Recent advancements in deep generative models have facilitated the creation of photo-realistic images across various tasks. However, these generated images often exhibit perceptual artifacts in specific regions, necessitating manual correction. In this study, we present a comprehensive empirical examination of Perceptual Artifacts Localization (PAL) spanning diverse image synthesis endeavors. We introduce a novel dataset comprising 10,168 generated images, each annotated with per-pixel perceptual artifact labels across ten synthesis tasks. A segmentation model, trained on our proposed dataset, effectively localizes artifacts across a range of tasks. Additionally, we illustrate its proficiency in adapting to previously unseen models using minimal training samples. We further propose an innovative zoom-in inpainting pipeline that seamlessly rectifies perceptual artifacts in the generated images. Through our experimental analyses, we elucidate several practical downstream applications, such as automated artifact rectification, non-referential image quality evaluation, and abnormal region detection in images. The dataset and code are released.
Abstract:In photo editing, it is common practice to remove visual distractions to improve the overall image quality and highlight the primary subject. However, manually selecting and removing these small and dense distracting regions can be a laborious and time-consuming task. In this paper, we propose an interactive distractor selection method that is optimized to achieve the task with just a single click. Our method surpasses the precision and recall achieved by the traditional method of running panoptic segmentation and then selecting the segments containing the clicks. We also showcase how a transformer-based module can be used to identify more distracting regions similar to the user's click position. Our experiments demonstrate that the model can effectively and accurately segment unknown distracting objects interactively and in groups. By significantly simplifying the photo cleaning and retouching process, our proposed model provides inspiration for exploring rare object segmentation and group selection with a single click.
Abstract:Wires and powerlines are common visual distractions that often undermine the aesthetics of photographs. The manual process of precisely segmenting and removing them is extremely tedious and may take up hours, especially on high-resolution photos where wires may span the entire space. In this paper, we present an automatic wire clean-up system that eases the process of wire segmentation and removal/inpainting to within a few seconds. We observe several unique challenges: wires are thin, lengthy, and sparse. These are rare properties of subjects that common segmentation tasks cannot handle, especially in high-resolution images. We thus propose a two-stage method that leverages both global and local contexts to accurately segment wires in high-resolution images efficiently, and a tile-based inpainting strategy to remove the wires given our predicted segmentation masks. We also introduce the first wire segmentation benchmark dataset, WireSegHR. Finally, we demonstrate quantitatively and qualitatively that our wire clean-up system enables fully automated wire removal with great generalization to various wire appearances.
Abstract:What is an image and how to extract latent features? Convolutional Networks (ConvNets) consider an image as organized pixels in a rectangular shape and extract features via convolutional operation in local region; Vision Transformers (ViTs) treat an image as a sequence of patches and extract features via attention mechanism in a global range. In this work, we introduce a straightforward and promising paradigm for visual representation, which is called Context Clusters. Context clusters (CoCs) view an image as a set of unorganized points and extract features via simplified clustering algorithm. In detail, each point includes the raw feature (e.g., color) and positional information (e.g., coordinates), and a simplified clustering algorithm is employed to group and extract deep features hierarchically. Our CoCs are convolution- and attention-free, and only rely on clustering algorithm for spatial interaction. Owing to the simple design, we show CoCs endow gratifying interpretability via the visualization of clustering process. Our CoCs aim at providing a new perspective on image and visual representation, which may enjoy broad applications in different domains and exhibit profound insights. Even though we are not targeting SOTA performance, COCs still achieve comparable or even better results than ConvNets or ViTs on several benchmarks. Codes are available at: https://github.com/ma-xu/Context-Cluster.
Abstract:Structure-guided image completion aims to inpaint a local region of an image according to an input guidance map from users. While such a task enables many practical applications for interactive editing, existing methods often struggle to hallucinate realistic object instances in complex natural scenes. Such a limitation is partially due to the lack of semantic-level constraints inside the hole region as well as the lack of a mechanism to enforce realistic object generation. In this work, we propose a learning paradigm that consists of semantic discriminators and object-level discriminators for improving the generation of complex semantics and objects. Specifically, the semantic discriminators leverage pretrained visual features to improve the realism of the generated visual concepts. Moreover, the object-level discriminators take aligned instances as inputs to enforce the realism of individual objects. Our proposed scheme significantly improves the generation quality and achieves state-of-the-art results on various tasks, including segmentation-guided completion, edge-guided manipulation and panoptically-guided manipulation on Places2 datasets. Furthermore, our trained model is flexible and can support multiple editing use cases, such as object insertion, replacement, removal and standard inpainting. In particular, our trained model combined with a novel automatic image completion pipeline achieves state-of-the-art results on the standard inpainting task.
Abstract:Deep image inpainting has made impressive progress with recent advances in image generation and processing algorithms. We claim that the performance of inpainting algorithms can be better judged by the generated structures and textures. Structures refer to the generated object boundary or novel geometric structures within the hole, while texture refers to high-frequency details, especially man-made repeating patterns filled inside the structural regions. We believe that better structures are usually obtained from a coarse-to-fine GAN-based generator network while repeating patterns nowadays can be better modeled using state-of-the-art high-frequency fast fourier convolutional layers. In this paper, we propose a novel inpainting network combining the advantages of the two designs. Therefore, our model achieves a remarkable visual quality to match state-of-the-art performance in both structure generation and repeating texture synthesis using a single network. Extensive experiments demonstrate the effectiveness of the method, and our conclusions further highlight the two critical factors of image inpainting quality, structures, and textures, as the future design directions of inpainting networks.
Abstract:Image inpainting is an essential task for multiple practical applications like object removal and image editing. Deep GAN-based models greatly improve the inpainting performance in structures and textures within the hole, but might also generate unexpected artifacts like broken structures or color blobs. Users perceive these artifacts to judge the effectiveness of inpainting models, and retouch these imperfect areas to inpaint again in a typical retouching workflow. Inspired by this workflow, we propose a new learning task of automatic segmentation of inpainting perceptual artifacts, and apply the model for inpainting model evaluation and iterative refinement. Specifically, we first construct a new inpainting artifacts dataset by manually annotating perceptual artifacts in the results of state-of-the-art inpainting models. Then we train advanced segmentation networks on this dataset to reliably localize inpainting artifacts within inpainted images. Second, we propose a new interpretable evaluation metric called Perceptual Artifact Ratio (PAR), which is the ratio of objectionable inpainted regions to the entire inpainted area. PAR demonstrates a strong correlation with real user preference. Finally, we further apply the generated masks for iterative image inpainting by combining our approach with multiple recent inpainting methods. Extensive experiments demonstrate the consistent decrease of artifact regions and inpainting quality improvement across the different methods.
Abstract:Image rasterization is a mature technique in computer graphics, while image vectorization, the reverse path of rasterization, remains a major challenge. Recent advanced deep learning-based models achieve vectorization and semantic interpolation of vector graphs and demonstrate a better topology of generating new figures. However, deep models cannot be easily generalized to out-of-domain testing data. The generated SVGs also contain complex and redundant shapes that are not quite convenient for further editing. Specifically, the crucial layer-wise topology and fundamental semantics in images are still not well understood and thus not fully explored. In this work, we propose Layer-wise Image Vectorization, namely LIVE, to convert raster images to SVGs and simultaneously maintain its image topology. LIVE can generate compact SVG forms with layer-wise structures that are semantically consistent with human perspective. We progressively add new bezier paths and optimize these paths with the layer-wise framework, newly designed loss functions, and component-wise path initialization technique. Our experiments demonstrate that LIVE presents more plausible vectorized forms than prior works and can be generalized to new images. With the help of this newly learned topology, LIVE initiates human editable SVGs for both designers and other downstream applications. Codes are made available at https://github.com/Picsart-AI-Research/LIVE-Layerwise-Image-Vectorization.
Abstract:Reference-guided image inpainting restores image pixels by leveraging the content from another reference image. The previous state-of-the-art, TransFill, warps the source image with multiple homographies, and fuses them together for hole filling. Inspired by structure from motion pipelines and recent progress in monocular depth estimation, we propose a more principled approach that does not require heuristic planar assumptions. We leverage a monocular depth estimate and predict relative pose between cameras, then align the reference image to the target by a differentiable 3D reprojection and a joint optimization of relative pose and depth map scale and offset. Our approach achieves state-of-the-art performance on both RealEstate10K and MannequinChallenge dataset with large baselines, complex geometry and extreme camera motions. We experimentally verify our approach is also better at handling large holes.