WeBank, China
Abstract:Personalized Federated Continual Learning (PFCL) is a new practical scenario that poses greater challenges in sharing and personalizing knowledge. PFCL not only relies on knowledge fusion for server aggregation at the global spatial-temporal perspective but also needs model improvement for each client according to the local requirements. Existing methods, whether in Personalized Federated Learning (PFL) or Federated Continual Learning (FCL), have overlooked the multi-granularity representation of knowledge, which can be utilized to overcome Spatial-Temporal Catastrophic Forgetting (STCF) and adopt generalized knowledge to itself by coarse-to-fine human cognitive mechanisms. Moreover, it allows more effectively to personalized shared knowledge, thus serving its own purpose. To this end, we propose a novel concept called multi-granularity prompt, i.e., coarse-grained global prompt acquired through the common model learning process, and fine-grained local prompt used to personalize the generalized representation. The former focuses on efficiently transferring shared global knowledge without spatial forgetting, and the latter emphasizes specific learning of personalized local knowledge to overcome temporal forgetting. In addition, we design a selective prompt fusion mechanism for aggregating knowledge of global prompts distilled from different clients. By the exclusive fusion of coarse-grained knowledge, we achieve the transmission and refinement of common knowledge among clients, further enhancing the performance of personalization. Extensive experiments demonstrate the effectiveness of the proposed method in addressing STCF as well as improving personalized performance. Our code now is available at https://github.com/SkyOfBeginning/FedMGP.
Abstract:In the context of real-world applications, leveraging large language models (LLMs) for domain-specific tasks often faces two major challenges: domain-specific knowledge privacy and constrained resources. To address these issues, we propose PDSS, a privacy-preserving framework for step-by-step distillation of LLMs. PDSS works on a server-client architecture, wherein client transmits perturbed prompts to the server's LLM for rationale generation. The generated rationales are then decoded by the client and used to enrich the training of task-specific small language model(SLM) within a multi-task learning paradigm. PDSS introduces two privacy protection strategies: the Exponential Mechanism Strategy and the Encoder-Decoder Strategy, balancing prompt privacy and rationale usability. Experiments demonstrate the effectiveness of PDSS in various text generation tasks, enabling the training of task-specific SLM with enhanced performance while prioritizing data privacy protection.
Abstract:Recent research in federated large language models (LLMs) has primarily focused on enabling clients to fine-tune their locally deployed homogeneous LLMs collaboratively or on transferring knowledge from server-based LLMs to small language models (SLMs) at downstream clients. However, a significant gap remains in the simultaneous mutual enhancement of both the server's LLM and clients' SLMs. To bridge this gap, we propose FedMKT, a parameter-efficient federated mutual knowledge transfer framework for large and small language models. This framework is designed to adaptively transfer knowledge from the server's LLM to clients' SLMs while concurrently enriching the LLM with clients' unique domain insights. We facilitate token alignment using minimum edit distance (MinED) and then selective mutual knowledge transfer between client-side SLMs and a server-side LLM, aiming to collectively enhance their performance. Through extensive experiments across three distinct scenarios, heterogeneous, homogeneous, and one-to-one, we evaluate the effectiveness of FedMKT using various public LLMs and SLMs on a range of NLP text generation tasks. Empirical results demonstrate significant performance improvements in clients' SLMs with the aid of the LLM. Furthermore, the LLM optimized by FedMKT achieves a performance comparable to that achieved through direct fine-tuning based on clients' data, highlighting the effectiveness and adaptability of FedMKT.
Abstract:Federated learning (FL) has emerged as a collaborative approach that allows multiple clients to jointly learn a machine learning model without sharing their private data. The concern about privacy leakage, albeit demonstrated under specific conditions, has triggered numerous follow-up research in designing powerful attacking methods and effective defending mechanisms aiming to thwart these attacking methods. Nevertheless, privacy-preserving mechanisms employed in these defending methods invariably lead to compromised model performances due to a fixed obfuscation applied to private data or gradients. In this article, we, therefore, propose a novel adaptive obfuscation mechanism, coined FedAdOb, to protect private data without yielding original model performances. Technically, FedAdOb utilizes passport-based adaptive obfuscation to ensure data privacy in both horizontal and vertical federated learning settings. The privacy-preserving capabilities of FedAdOb, specifically with regard to private features and labels, are theoretically proven through Theorems 1 and 2. Furthermore, extensive experimental evaluations conducted on various datasets and network architectures demonstrate the effectiveness of FedAdOb by manifesting its superior trade-off between privacy preservation and model performance, surpassing existing methods.
Abstract:Individuals and businesses have been significantly benefited by Large Language Models (LLMs) including PaLM, Gemini and ChatGPT in various ways. For example, LLMs enhance productivity, reduce costs, and enable us to focus on more valuable tasks. Furthermore, LLMs possess the capacity to sift through extensive datasets, uncover underlying patterns, and furnish critical insights that propel the frontiers of technology and science. However, LLMs also pose privacy concerns. Users' interactions with LLMs may expose their sensitive personal or company information. A lack of robust privacy safeguards and legal frameworks could permit the unwarranted intrusion or improper handling of individual data, thereby risking infringements of privacy and the theft of personal identities. To ensure privacy, it is essential to minimize the dependency between shared prompts and private information. Various randomization approaches have been proposed to protect prompts' privacy, but they may incur utility loss compared to unprotected LLMs prompting. Therefore, it is essential to evaluate the balance between the risk of privacy leakage and loss of utility when conducting effective protection mechanisms. The current study develops a framework for inferring privacy-protected Large Language Models (LLMs) and lays down a solid theoretical basis for examining the interplay between privacy preservation and utility. The core insight is encapsulated within a theorem that is called as the NFL (abbreviation of the word No-Free-Lunch) Theorem.
Abstract:While AI-generated content has garnered significant attention, achieving photo-realistic video synthesis remains a formidable challenge. Despite the promising advances in diffusion models for video generation quality, the complex model architecture and substantial computational demands for both training and inference create a significant gap between these models and real-world applications. This paper presents SNED, a superposition network architecture search method for efficient video diffusion model. Our method employs a supernet training paradigm that targets various model cost and resolution options using a weight-sharing method. Moreover, we propose the supernet training sampling warm-up for fast training optimization. To showcase the flexibility of our method, we conduct experiments involving both pixel-space and latent-space video diffusion models. The results demonstrate that our framework consistently produces comparable results across different model options with high efficiency. According to the experiment for the pixel-space video diffusion model, we can achieve consistent video generation results simultaneously across 64 x 64 to 256 x 256 resolutions with a large range of model sizes from 640M to 1.6B number of parameters for pixel-space video diffusion models.
Abstract:Diffusion Models (DMs) have exhibited superior performance in generating high-quality and diverse images. However, this exceptional performance comes at the cost of expensive architectural design, particularly due to the attention module heavily used in leading models. Existing works mainly adopt a retraining process to enhance DM efficiency. This is computationally expensive and not very scalable. To this end, we introduce the Attention-driven Training-free Efficient Diffusion Model (AT-EDM) framework that leverages attention maps to perform run-time pruning of redundant tokens, without the need for any retraining. Specifically, for single-denoising-step pruning, we develop a novel ranking algorithm, Generalized Weighted Page Rank (G-WPR), to identify redundant tokens, and a similarity-based recovery method to restore tokens for the convolution operation. In addition, we propose a Denoising-Steps-Aware Pruning (DSAP) approach to adjust the pruning budget across different denoising timesteps for better generation quality. Extensive evaluations show that AT-EDM performs favorably against prior art in terms of efficiency (e.g., 38.8% FLOPs saving and up to 1.53x speed-up over Stable Diffusion XL) while maintaining nearly the same FID and CLIP scores as the full model. Project webpage: https://atedm.github.io.
Abstract:Federated Class-Incremental Learning (FCIL) focuses on continually transferring the previous knowledge to learn new classes in dynamic Federated Learning (FL). However, existing methods do not consider the trustworthiness of FCIL, i.e., improving continual utility, privacy, and efficiency simultaneously, which is greatly influenced by catastrophic forgetting and data heterogeneity among clients. To address this issue, we propose FedProK (Federated Prototypical Feature Knowledge Transfer), leveraging prototypical feature as a novel representation of knowledge to perform spatial-temporal knowledge transfer. Specifically, FedProK consists of two components: (1) feature translation procedure on the client side by temporal knowledge transfer from the learned classes and (2) prototypical knowledge fusion on the server side by spatial knowledge transfer among clients. Extensive experiments conducted in both synchronous and asynchronous settings demonstrate that our FedProK outperforms the other state-of-the-art methods in three perspectives of trustworthiness, validating its effectiveness in selectively transferring spatial-temporal knowledge.
Abstract:Federated Learning (FL) has emerged as a promising solution for collaborative training of large language models (LLMs). However, the integration of LLMs into FL introduces new challenges, particularly concerning the evaluation of LLMs. Traditional evaluation methods that rely on labeled test sets and similarity-based metrics cover only a subset of the acceptable answers, thereby failing to accurately reflect the performance of LLMs on generative tasks. Meanwhile, although automatic evaluation methods that leverage advanced LLMs present potential, they face critical risks of data leakage due to the need to transmit data to external servers and suboptimal performance on downstream tasks due to the lack of domain knowledge. To address these issues, we propose a Federated Evaluation framework of Large Language Models, named FedEval-LLM, that provides reliable performance measurements of LLMs on downstream tasks without the reliance on labeled test sets and external tools, thus ensuring strong privacy-preserving capability. FedEval-LLM leverages a consortium of personalized LLMs from participants as referees to provide domain knowledge and collective evaluation capability, thus aligning to the respective downstream tasks and mitigating uncertainties and biases associated with a single referee. Experimental results demonstrate a significant improvement in the evaluation capability of personalized evaluation models on downstream tasks. When applied to FL, these evaluation models exhibit strong agreement with human preference and RougeL-score on meticulously curated test sets. FedEval-LLM effectively overcomes the limitations of traditional metrics and the reliance on external services, making it a promising framework for the evaluation of LLMs within collaborative training scenarios.
Abstract:SecureBoost is a tree-boosting algorithm that leverages homomorphic encryption (HE) to protect data privacy in vertical federated learning. SecureBoost and its variants have been widely adopted in fields such as finance and healthcare. However, the hyperparameters of SecureBoost are typically configured heuristically for optimizing model performance (i.e., utility) solely, assuming that privacy is secured. Our study found that SecureBoost and some of its variants are still vulnerable to label leakage. This vulnerability may lead the current heuristic hyperparameter configuration of SecureBoost to a suboptimal trade-off between utility, privacy, and efficiency, which are pivotal elements toward a trustworthy federated learning system. To address this issue, we propose the Constrained Multi-Objective SecureBoost (CMOSB) algorithm, which aims to approximate Pareto optimal solutions that each solution is a set of hyperparameters achieving an optimal trade-off between utility loss, training cost, and privacy leakage. We design measurements of the three objectives, including a novel label inference attack named instance clustering attack (ICA) to measure the privacy leakage of SecureBoost. Additionally, we provide two countermeasures against ICA. The experimental results demonstrate that the CMOSB yields superior hyperparameters over those optimized by grid search and Bayesian optimization regarding the trade-off between utility loss, training cost, and privacy leakage.