Abstract:A robot that learns from demonstrations should not just imitate what it sees -- it should understand the high-level concepts that are being demonstrated and generalize them to new tasks. Bilevel planning is a hierarchical model-based approach where predicates (relational state abstractions) can be leveraged to achieve compositional generalization. However, previous bilevel planning approaches depend on predicates that are either hand-engineered or restricted to very simple forms, limiting their scalability to sophisticated, high-dimensional state spaces. To address this limitation, we present IVNTR, the first bilevel planning approach capable of learning neural predicates directly from demonstrations. Our key innovation is a neuro-symbolic bilevel learning framework that mirrors the structure of bilevel planning. In IVNTR, symbolic learning of the predicate "effects" and neural learning of the predicate "functions" alternate, with each providing guidance for the other. We evaluate IVNTR in six diverse robot planning domains, demonstrating its effectiveness in abstracting various continuous and high-dimensional states. While most existing approaches struggle to generalize (with <35% success rate), our IVNTR achieves an average of 77% success rate on unseen tasks. Additionally, we showcase IVNTR on a mobile manipulator, where it learns to perform real-world mobile manipulation tasks and generalizes to unseen test scenarios that feature new objects, new states, and longer task horizons. Our findings underscore the promise of learning and planning with abstractions as a path towards high-level generalization.
Abstract:First-order logic (FOL) reasoning, which involves sequential deduction, is pivotal for intelligent systems and serves as a valuable task for evaluating reasoning capabilities, particularly in chain-of-thought (CoT) contexts. Existing benchmarks often rely on extensive human annotation or handcrafted templates, making it difficult to achieve the necessary complexity, scalability, and diversity for robust evaluation. To address these limitations, we propose a novel framework called ProverGen that synergizes the generative strengths of Large Language Models (LLMs) with the rigor and precision of symbolic provers, enabling the creation of a scalable, diverse, and high-quality FOL reasoning dataset, ProverQA. ProverQA is also distinguished by its inclusion of accessible and logically coherent intermediate reasoning steps for each problem. Our evaluation shows that state-of-the-art LLMs struggle to solve ProverQA problems, even with CoT prompting, highlighting the dataset's challenging nature. We also finetune Llama3.1-8B-Instruct on a separate training set generated by our framework. The finetuned model demonstrates consistent improvements on both in-distribution and out-of-distribution test sets, suggesting the value of our proposed data generation framework. Code available at: https://github.com/opendatalab/ProverGen
Abstract:Vision-language navigation in unknown environments is crucial for mobile robots. In scenarios such as household assistance and rescue, mobile robots need to understand a human command, such as "find a person wearing black". We present a novel vision-language navigation (VL-Nav) system that integrates efficient spatial reasoning on low-power robots. Unlike prior methods that rely on a single image-level feature similarity to guide a robot, we introduce the heuristic-vision-language (HVL) spatial reasoning for goal point selection. It combines pixel-wise vision-language features and heuristic exploration to enable efficient navigation to human-instructed instances in various environments robustly. We deploy VL-Nav on a four-wheel mobile robot and conduct comprehensive navigation tasks in various environments of different scales and semantic complexities, indoors and outdoors. Remarkably, VL-Nav operates at a real-time frequency of 30 Hz with a Jetson Orin NX, highlighting its ability to conduct efficient vision-language navigation. Experimental results show that VL-Nav achieves an overall success rate of 86.3%, outperforming previous methods by 44.15%.
Abstract:We introduce Baichuan-Omni-1.5, an omni-modal model that not only has omni-modal understanding capabilities but also provides end-to-end audio generation capabilities. To achieve fluent and high-quality interaction across modalities without compromising the capabilities of any modality, we prioritized optimizing three key aspects. First, we establish a comprehensive data cleaning and synthesis pipeline for multimodal data, obtaining about 500B high-quality data (text, audio, and vision). Second, an audio-tokenizer (Baichuan-Audio-Tokenizer) has been designed to capture both semantic and acoustic information from audio, enabling seamless integration and enhanced compatibility with MLLM. Lastly, we designed a multi-stage training strategy that progressively integrates multimodal alignment and multitask fine-tuning, ensuring effective synergy across all modalities. Baichuan-Omni-1.5 leads contemporary models (including GPT4o-mini and MiniCPM-o 2.6) in terms of comprehensive omni-modal capabilities. Notably, it achieves results comparable to leading models such as Qwen2-VL-72B across various multimodal medical benchmarks.
Abstract:Large Language Models have advanced automated software development, however, it remains a challenge to correctly infer dependencies, namely, identifying the internal components and external packages required for a repository to successfully run. Existing studies highlight that dependency-related issues cause over 40\% of observed runtime errors on the generated repository. To address this, we introduce DI-BENCH, a large-scale benchmark and evaluation framework specifically designed to assess LLMs' capability on dependency inference. The benchmark features 581 repositories with testing environments across Python, C#, Rust, and JavaScript. Extensive experiments with textual and execution-based metrics reveal that the current best-performing model achieves only a 42.9% execution pass rate, indicating significant room for improvement. DI-BENCH establishes a new viewpoint for evaluating LLM performance on repositories, paving the way for more robust end-to-end software synthesis.
Abstract:Zero-shot Text-To-Speech (TTS) synthesis shows great promise for personalized voice customization through voice cloning. However, current methods for achieving zero-shot TTS heavily rely on large model scales and extensive training datasets to ensure satisfactory performance and generalizability across various speakers. This raises concerns regarding both deployment costs and data security. In this paper, we present a lightweight and stable zero-shot TTS system. We introduce a novel TTS architecture designed to effectively model linguistic content and various speaker attributes from source speech and prompt speech, respectively. Furthermore, we present a two-stage self-distillation framework that constructs parallel data pairs for effectively disentangling linguistic content and speakers from the perspective of training data. Extensive experiments show that our system exhibits excellent performance and superior stability on the zero-shot TTS tasks. Moreover, it shows markedly superior computational efficiency, with RTFs of 0.13 and 0.012 on the CPU and GPU, respectively.
Abstract:Large Language Models (LLMs) have demonstrated remarkable proficiency across a variety of complex tasks. One significant application of LLMs is in tackling software engineering challenges, particularly in resolving real-world tasks on GitHub by fixing code based on the issues reported by the users. However, many current approaches rely on proprietary LLMs, which limits reproducibility, accessibility, and transparency. The critical components of LLMs for addressing software engineering issues and how their capabilities can be effectively enhanced remain unclear. To address these challenges, we introduce SWE-Fixer, a novel open-source LLM designed to effectively and efficiently resolve GitHub issues. SWE-Fixer comprises two essential modules: a code file retrieval module and a code editing module. The retrieval module employs BM25 along with a lightweight LLM model to achieve coarse-to-fine file retrieval. Subsequently, the code editing module utilizes the other LLM model to generate patches for the identified files. Then, to mitigate the lack of publicly available datasets, we compile an extensive dataset that includes 110K GitHub issues along with their corresponding patches, and train the two modules of SWE-Fixer separately. We assess our approach on the SWE-Bench Lite and Verified benchmarks, achieving state-of-the-art performance among open-source models with scores of 23.3% and 30.2%, respectively. These outcomes highlight the efficacy of our approach. We will make our model, dataset, and code publicly available at https://github.com/InternLM/SWE-Fixer.
Abstract:Cyber-physical-social systems (CPSSs) have emerged in many applications over recent decades, requiring increased attention to security concerns. The rise of sophisticated threats like Advanced Persistent Threats (APTs) makes ensuring security in CPSSs particularly challenging. Provenance graph analysis has proven effective for tracing and detecting anomalies within systems, but the sheer size and complexity of these graphs hinder the efficiency of existing methods, especially those relying on graph neural networks (GNNs). To address these challenges, we present GraphDART, a modular framework designed to distill provenance graphs into compact yet informative representations, enabling scalable and effective anomaly detection. GraphDART can take advantage of diverse graph distillation techniques, including classic and modern graph distillation methods, to condense large provenance graphs while preserving essential structural and contextual information. This approach significantly reduces computational overhead, allowing GNNs to learn from distilled graphs efficiently and enhance detection performance. Extensive evaluations on benchmark datasets demonstrate the robustness of GraphDART in detecting malicious activities across cyber-physical-social systems. By optimizing computational efficiency, GraphDART provides a scalable and practical solution to safeguard interconnected environments against APTs.
Abstract:Graphs are data structures used to represent irregular networks and are prevalent in numerous real-world applications. Previous methods directly model graph structures and achieve significant success. However, these methods encounter bottlenecks due to the inherent irregularity of graphs. An innovative solution is converting graphs into textual representations, thereby harnessing the powerful capabilities of Large Language Models (LLMs) to process and comprehend graphs. In this paper, we present a comprehensive review of methodologies for applying LLMs to graphs, termed LLM4graph. The core of LLM4graph lies in transforming graphs into texts for LLMs to understand and analyze. Thus, we propose a novel taxonomy of LLM4graph methods in the view of the transformation. Specifically, existing methods can be divided into two paradigms: Graph2text and Graph2token, which transform graphs into texts or tokens as the input of LLMs, respectively. We point out four challenges during the transformation to systematically present existing methods in a problem-oriented perspective. For practical concerns, we provide a guideline for researchers on selecting appropriate models and LLMs for different graphs and hardware constraints. We also identify five future research directions for LLM4graph.
Abstract:With the advancement of deep learning, object detectors (ODs) with various architectures have achieved significant success in complex scenarios like autonomous driving. Previous adversarial attacks against ODs have been focused on designing customized attacks targeting their specific structures (e.g., NMS and RPN), yielding some results but simultaneously constraining their scalability. Moreover, most efforts against ODs stem from image-level attacks originally designed for classification tasks, resulting in redundant computations and disturbances in object-irrelevant areas (e.g., background). Consequently, how to design a model-agnostic efficient attack to comprehensively evaluate the vulnerabilities of ODs remains challenging and unresolved. In this paper, we propose NumbOD, a brand-new spatial-frequency fusion attack against various ODs, aimed at disrupting object detection within images. We directly leverage the features output by the OD without relying on its internal structures to craft adversarial examples. Specifically, we first design a dual-track attack target selection strategy to select high-quality bounding boxes from OD outputs for targeting. Subsequently, we employ directional perturbations to shift and compress predicted boxes and change classification results to deceive ODs. Additionally, we focus on manipulating the high-frequency components of images to confuse ODs' attention on critical objects, thereby enhancing the attack efficiency. Our extensive experiments on nine ODs and two datasets show that NumbOD achieves powerful attack performance and high stealthiness.