Abstract:Making multi-camera visual SLAM systems easier to set up and more robust to the environment is always one of the focuses of vision robots. Existing monocular and binocular vision SLAM systems have narrow FoV and are fragile in textureless environments with degenerated accuracy and limited robustness. Thus multi-camera SLAM systems are gaining attention because they can provide redundancy for texture degeneration with wide FoV. However, current multi-camera SLAM systems face massive data processing pressure and elaborately designed camera configurations, leading to estimation failures for arbitrarily arranged multi-camera systems. To address these problems, we propose a generic visual odometry for arbitrarily arranged multi-cameras, which can achieve metric-scale state estimation with high flexibility in the cameras' arrangement. Specifically, we first design a learning-based feature extraction and tracking framework to shift the pressure of CPU processing of multiple video streams. Then we use the rigid constraints between cameras to estimate the metric scale poses for robust SLAM system initialization. Finally, we fuse the features of the multi-cameras in the SLAM back-end to achieve robust pose estimation and online scale optimization. Additionally, multi-camera features help improve the loop detection for pose graph optimization. Experiments on KITTI-360 and MultiCamData datasets validate the robustness of our method over arbitrarily placed cameras. Compared with other stereo and multi-camera visual SLAM systems, our method obtains higher pose estimation accuracy with better generalization ability. Our codes and online demos are available at \url{https://github.com/JunhaoWang615/MCVO}
Abstract:We introduce Differential Performance Evaluation (DPE), a framework designed to reliably evaluate Large Language Models (LLMs) for efficient code generation. Traditional coding benchmarks often fail to provide reliable insights into code efficiency, due to their reliance on simplistic test inputs and the absence of effective compound metrics. DPE addresses these issues by focusing on efficiency-demanding programming tasks and establishing an insightful compound metric for performance evaluation. DPE operates in two phases: To curate efficiency datasets, it selects efficiency-demanding tasks from existing coding benchmarks and generates computationally expensive inputs to stress the efficiency of LLM solutions. To assess the code efficiency, DPE profiles the new solution and compares it globally against a set of reference solutions that exhibit distinct efficiency levels, where the matched level defines its efficiency score. As a proof of concept, we use DPE to create EvalPerf, a benchmark with 121 performance-challenging coding tasks. Our comprehensive evaluation draws interesting findings on the efficiency impact of model sizes, instruction tuning, and prompting. For example, while the scaling law fails to account for code efficiency, general instruction tuning benefits both code correctness and efficiency. We also evaluate the evaluation by examining the effectiveness of DPE, showing that EvalPerf is reliable and convenient to use even across platforms.
Abstract:Modern displays nowadays possess the capability to render video content with a high dynamic range (HDR) and an extensive color gamut (WCG).However, the majority of available resources are still in standard dynamic range(SDR). Therefore, we need to identify an effective methodology for this objective.The existing deep neural network (DNN) based SDR(Standard dynamic range) to HDR (High dynamic range) conversion methods outperform conventional methods, but they are either too large to implement or generate some terrible artifacts. We propose a neural network for SDRTV to HDRTV conversion, termed "FastHDRNet". This network includes two parts, Adaptive Universal Color Transformation and Local Enhancement.The architecture is designed as a lightweight network that utilizes global statistics and local information with super high efficiency. After the experiment, we find that our proposed method achieve state-of-the-art performance in both quantitative comparisons and visual quality with a lightweight structure and a enhanced infer speed.
Abstract:Since the 1960s, neonatal clinicians have known that newborns suffering from certain neurological conditions exhibit altered crying patterns such as the high-pitched cry in birth asphyxia. Despite an annual burden of over 1.5 million infant deaths and disabilities, early detection of neonatal brain injuries due to asphyxia remains a challenge, particularly in developing countries where the majority of births are not attended by a trained physician. Here we report on the first inter-continental clinical study to demonstrate that neonatal brain injury can be reliably determined from recorded infant cries using an AI algorithm we call Roseline. Previous and recent work has been limited by the lack of a large, high-quality clinical database of cry recordings, constraining the application of state-of-the-art machine learning. We develop a new training methodology for audio-based pathology detection models and evaluate this system on a large database of newborn cry sounds acquired from geographically diverse settings -- 5 hospitals across 3 continents. Our system extracts interpretable acoustic biomarkers that support clinical decisions and is able to accurately detect neurological injury from newborns' cries with an AUC of 92.5% (88.7% sensitivity at 80% specificity). Cry-based neurological monitoring opens the door for low-cost, easy-to-use, non-invasive and contact-free screening of at-risk babies, especially when integrated into simple devices like smartphones or neonatal ICU monitors. This would provide a reliable tool where there are no alternatives, but also curtail the need to regularly exert newborns to physically-exhausting or radiation-exposing assessments such as brain CT scans. This work sets the stage for embracing the infant cry as a vital sign and indicates the potential of AI-driven sound monitoring for the future of affordable healthcare.
Abstract:In this paper, we investigate the streaming bandits problem, wherein the learner aims to minimize regret by dealing with online arriving arms and sublinear arm memory. We establish the tight worst-case regret lower bound of $\Omega \left( (TB)^{\alpha} K^{1-\alpha}\right), \alpha = 2^{B} / (2^{B+1}-1)$ for any algorithm with a time horizon $T$, number of arms $K$, and number of passes $B$. The result reveals a separation between the stochastic bandits problem in the classical centralized setting and the streaming setting with bounded arm memory. Notably, in comparison to the well-known $\Omega(\sqrt{KT})$ lower bound, an additional double logarithmic factor is unavoidable for any streaming bandits algorithm with sublinear memory permitted. Furthermore, we establish the first instance-dependent lower bound of $\Omega \left(T^{1/(B+1)} \sum_{\Delta_x>0} \frac{\mu^*}{\Delta_x}\right)$ for streaming bandits. These lower bounds are derived through a unique reduction from the regret-minimization setting to the sample complexity analysis for a sequence of $\epsilon$-optimal arms identification tasks, which maybe of independent interest. To complement the lower bound, we also provide a multi-pass algorithm that achieves a regret upper bound of $\tilde{O} \left( (TB)^{\alpha} K^{1 - \alpha}\right)$ using constant arm memory.
Abstract:In this paper, we explore self-supervised learning (SSL) for analyzing a first-of-its-kind database of cry recordings containing clinical indications of more than a thousand newborns. Specifically, we target cry-based detection of neurological injury as well as identification of cry triggers such as pain, hunger, and discomfort. Annotating a large database in the medical setting is expensive and time-consuming, typically requiring the collaboration of several experts over years. Leveraging large amounts of unlabeled audio data to learn useful representations can lower the cost of building robust models and, ultimately, clinical solutions. In this work, we experiment with self-supervised pre-training of a convolutional neural network on large audio datasets. We show that pre-training with SSL contrastive loss (SimCLR) performs significantly better than supervised pre-training for both neuro injury and cry triggers. In addition, we demonstrate further performance gains through SSL-based domain adaptation using unlabeled infant cries. We also show that using such SSL-based pre-training for adaptation to cry sounds decreases the need for labeled data of the overall system.
Abstract:Explicit engineering of reward functions for given environments has been a major hindrance to reinforcement learning methods. While Inverse Reinforcement Learning (IRL) is a solution to recover reward functions from demonstrations only, these learned rewards are generally heavily \textit{entangled} with the dynamics of the environment and therefore not portable or \emph{robust} to changing environments. Modern adversarial methods have yielded some success in reducing reward entanglement in the IRL setting. In this work, we leverage one such method, Adversarial Inverse Reinforcement Learning (AIRL), to propose an algorithm that learns hierarchical disentangled rewards with a policy over options. We show that this method has the ability to learn \emph{generalizable} policies and reward functions in complex transfer learning tasks, while yielding results in continuous control benchmarks that are comparable to those of the state-of-the-art methods.
Abstract:Dynamic Portfolio Management is a domain that concerns the continuous redistribution of assets within a portfolio to maximize the total return in a given period of time. With the recent advancement in machine learning and artificial intelligence, many efforts have been put in designing and discovering efficient algorithmic ways to manage the portfolio. This paper presents two different reinforcement learning agents, policy gradient actor-critic and evolution strategy. The performance of the two agents is compared during backtesting. We also discuss the problem set up from state space design, to state value function approximator and policy control design. We include the short position to give the agent more flexibility during assets redistribution and a constant trading cost of 0.25%. The agent is able to achieve 5% return in 10 days daily trading despite 0.25% trading cost.
Abstract:Imitation learning seeks to learn an expert policy from sampled demonstrations. However, in the real world, it is often difficult to find a perfect expert and avoiding dangerous behaviors becomes relevant for safety reasons. We present the idea of \textit{learning to avoid}, an objective opposite to imitation learning in some sense, where an agent learns to avoid a demonstrator policy given an environment. We define avoidance learning as the process of optimizing the agent's reward while avoiding dangerous behaviors given by a demonstrator. In this work we develop a framework of avoidance learning by defining a suitable objective function for these problems which involves the \emph{distance} of state occupancy distributions of the expert and demonstrator policies. We use density estimates for state occupancy measures and use the aforementioned distance as the reward bonus for avoiding the demonstrator. We validate our theory with experiments using a wide range of partially observable environments. Experimental results show that we are able to improve sample efficiency during training compared to state of the art policy optimization and safety methods.
Abstract:Social media sites are becoming a key factor in politics. These platforms are easy to manipulate for the purpose of distorting information space to confuse and distract voters. Past works to identify disruptive patterns are mostly focused on analyzing the content of tweets. In this study, we jointly embed the information from both user posted content as well as a user's follower network, to detect groups of densely connected users in an unsupervised fashion. We then investigate these dense sub-blocks of users to flag anomalous behavior. In our experiments, we study the tweets related to the upcoming 2019 Canadian Elections, and observe a set of densely-connected users engaging in local politics in different provinces, and exhibiting troll-like behavior.