Department of Computer Science and Technology, Tsinghua University, Beijing, China
Abstract:Recent advances in diffusion models have led to significant progress in audio-driven lip synchronization. However, existing methods typically rely on constrained audio-visual alignment priors or multi-stage learning of intermediate representations to force lip motion synthesis. This leads to complex training pipelines and limited motion naturalness. In this paper, we present SayAnything, a conditional video diffusion framework that directly synthesizes lip movements from audio input while preserving speaker identity. Specifically, we propose three specialized modules including identity preservation module, audio guidance module, and editing control module. Our novel design effectively balances different condition signals in the latent space, enabling precise control over appearance, motion, and region-specific generation without requiring additional supervision signals or intermediate representations. Extensive experiments demonstrate that SayAnything generates highly realistic videos with improved lip-teeth coherence, enabling unseen characters to say anything, while effectively generalizing to animated characters.
Abstract:Existing concealed object segmentation (COS) methods frequently utilize reversible strategies to address uncertain regions. However, these approaches are typically restricted to the mask domain, leaving the potential of the RGB domain underexplored. To address this, we propose the Reversible Unfolding Network (RUN), which applies reversible strategies across both mask and RGB domains through a theoretically grounded framework, enabling accurate segmentation. RUN first formulates a novel COS model by incorporating an extra residual sparsity constraint to minimize segmentation uncertainties. The iterative optimization steps of the proposed model are then unfolded into a multistage network, with each step corresponding to a stage. Each stage of RUN consists of two reversible modules: the Segmentation-Oriented Foreground Separation (SOFS) module and the Reconstruction-Oriented Background Extraction (ROBE) module. SOFS applies the reversible strategy at the mask level and introduces Reversible State Space to capture non-local information. ROBE extends this to the RGB domain, employing a reconstruction network to address conflicting foreground and background regions identified as distortion-prone areas, which arise from their separate estimation by independent modules. As the stages progress, RUN gradually facilitates reversible modeling of foreground and background in both the mask and RGB domains, directing the network's attention to uncertain regions and mitigating false-positive and false-negative results. Extensive experiments demonstrate the superior performance of RUN and highlight the potential of unfolding-based frameworks for COS and other high-level vision tasks. We will release the code and models.
Abstract:Vision language model (VLM) has been designed for large scale image-text alignment as a pretrained foundation model. For downstream few shot classification tasks, parameter efficient fine-tuning (PEFT) VLM has gained much popularity in the computer vision community. PEFT methods like prompt tuning and linear adapter have been studied for fine-tuning VLM while low rank adaptation (LoRA) algorithm has rarely been considered for few shot fine-tuning VLM. The main obstacle to use LoRA for few shot fine-tuning is the catastrophic forgetting problem. Because the visual language alignment knowledge is important for the generality in few shot learning, whereas low rank adaptation interferes with the most informative direction of the pretrained weight matrix. We propose the complementary subspace low rank adaptation (Comp-LoRA) method to regularize the catastrophic forgetting problem in few shot VLM finetuning. In detail, we optimize the low rank matrix in the complementary subspace, thus preserving the general vision language alignment ability of VLM when learning the novel few shot information. We conduct comparison experiments of the proposed Comp-LoRA method and other PEFT methods on fine-tuning VLM for few shot classification. And we also present the suppression on the catastrophic forgetting problem of our proposed method against directly applying LoRA to VLM. The results show that the proposed method surpasses the baseline method by about +1.0\% Top-1 accuracy and preserves the VLM zero-shot performance over the baseline method by about +1.3\% Top-1 accuracy.
Abstract:Unmanned Aerial Vehicles (UAVs) are increasingly adopted in modern communication networks. However, challenges in decision-making and digital modeling continue to impede their rapid advancement. Reinforcement Learning (RL) algorithms face limitations such as low sample efficiency and limited data versatility, further magnified in UAV communication scenarios. Moreover, Digital Twin (DT) modeling introduces substantial decision-making and data management complexities. RL models, often integrated into DT frameworks, require extensive training data to achieve accurate predictions. In contrast to traditional approaches that focus on class boundaries, Diffusion Models (DMs), a new class of generative AI, learn the underlying probability distribution from the training data and can generate trustworthy new patterns based on this learned distribution. This paper explores the integration of DMs with RL and DT to effectively address these challenges. By combining the data generation capabilities of DMs with the decision-making framework of RL and the modeling accuracy of DT, the integration improves the adaptability and real-time performance of UAV communication. Moreover, the study shows how DMs can alleviate data scarcity, improve policy networks, and optimize dynamic modeling, providing a robust solution for complex UAV communication scenarios.
Abstract:In recent years, deep neural networks, including Convolutional Neural Networks, Transformers, and State Space Models, have achieved significant progress in Remote Sensing Image (RSI) Super-Resolution (SR). However, existing SR methods typically overlook the complementary relationship between global and local dependencies. These methods either focus on capturing local information or prioritize global information, which results in models that are unable to effectively capture both global and local features simultaneously. Moreover, their computational cost becomes prohibitive when applied to large-scale RSIs. To address these challenges, we introduce the novel application of Receptance Weighted Key Value (RWKV) to RSI-SR, which captures long-range dependencies with linear complexity. To simultaneously model global and local features, we propose the Global-Detail dual-branch structure, GDSR, which performs SR reconstruction by paralleling RWKV and convolutional operations to handle large-scale RSIs. Furthermore, we introduce the Global-Detail Reconstruction Module (GDRM) as an intermediary between the two branches to bridge their complementary roles. In addition, we propose Wavelet Loss, a loss function that effectively captures high-frequency detail information in images, thereby enhancing the visual quality of SR, particularly in terms of detail reconstruction. Extensive experiments on several benchmarks, including AID, AID_CDM, RSSRD-QH, and RSSRD-QH_CDM, demonstrate that GSDR outperforms the state-of-the-art Transformer-based method HAT by an average of 0.05 dB in PSNR, while using only 63% of its parameters and 51% of its FLOPs, achieving an inference speed 2.9 times faster. Furthermore, the Wavelet Loss shows excellent generalization across various architectures, providing a novel perspective for RSI-SR enhancement.
Abstract:Facial attractiveness prediction (FAP) has long been an important computer vision task, which could be widely applied in live streaming for facial retouching, content recommendation, etc. However, previous FAP datasets are either small, closed-source, or lack diversity. Moreover, the corresponding FAP models exhibit limited generalization and adaptation ability. To overcome these limitations, in this paper we present LiveBeauty, the first large-scale live-specific FAP dataset, in a more challenging application scenario, i.e., live streaming. 10,000 face images are collected from a live streaming platform directly, with 200,000 corresponding attractiveness annotations obtained from a well-devised subjective experiment, making LiveBeauty the largest open-access FAP dataset in the challenging live scenario. Furthermore, a multi-modal FAP method is proposed to measure the facial attractiveness in live streaming. Specifically, we first extract holistic facial prior knowledge and multi-modal aesthetic semantic features via a Personalized Attractiveness Prior Module (PAPM) and a Multi-modal Attractiveness Encoder Module (MAEM), respectively, then integrate the extracted features through a Cross-Modal Fusion Module (CMFM). Extensive experiments conducted on both LiveBeauty and other open-source FAP datasets demonstrate that our proposed method achieves state-of-the-art performance. Dataset will be available soon.
Abstract:We introduce LLM4AD, a unified Python platform for algorithm design (AD) with large language models (LLMs). LLM4AD is a generic framework with modularized blocks for search methods, algorithm design tasks, and LLM interface. The platform integrates numerous key methods and supports a wide range of algorithm design tasks across various domains including optimization, machine learning, and scientific discovery. We have also designed a unified evaluation sandbox to ensure a secure and robust assessment of algorithms. Additionally, we have compiled a comprehensive suite of support resources, including tutorials, examples, a user manual, online resources, and a dedicated graphical user interface (GUI) to enhance the usage of LLM4AD. We believe this platform will serve as a valuable tool for fostering future development in the merging research direction of LLM-assisted algorithm design.
Abstract:Hepatic echinococcosis (HE) is a prevalent disease in economically underdeveloped pastoral areas, where adequate medical resources are usually lacking. Existing methods often ignore multi-scale feature fusion or focus only on feature fusion between adjacent levels, which may lead to insufficient feature fusion. To address these issues, we propose HES-UNet, an efficient and accurate model for HE lesion segmentation. This model combines convolutional layers and attention modules to capture local and global features. During downsampling, the multi-directional downsampling block (MDB) is employed to integrate high-frequency and low-frequency features, effectively extracting image details. The multi-scale aggregation block (MAB) aggregates multi-scale feature information. In contrast, the multi-scale upsampling Block (MUB) learns highly abstract features and supplies this information to the skip connection module to fuse multi-scale features. Due to the distinct regional characteristics of HE, there is currently no publicly available high-quality dataset for training our model. We collected CT slice data from 268 patients at a certain hospital to train and evaluate the model. The experimental results show that HES-UNet achieves state-of-the-art performance on our dataset, achieving an overall Dice Similarity Coefficient (DSC) of 89.21%, which is 1.09% higher than that of TransUNet. The project page is available at https://chenjiayan-qhu.github.io/HES-UNet-page.
Abstract:Fine-grained remote sensing image segmentation is essential for accurately identifying detailed objects in remote sensing images. Recently, vision transformer models (VTM) pretrained on large-scale datasets have shown strong zero-shot generalization, indicating that they have learned the general knowledge of object understanding. We introduce a novel end-to-end learning paradigm combining knowledge guidance with domain refinement to enhance performance. We present two key components: the Feature Alignment Module (FAM) and the Feature Modulation Module (FMM). FAM aligns features from a CNN-based backbone with those from the pretrained VTM's encoder using channel transformation and spatial interpolation, and transfers knowledge via KL divergence and L2 normalization constraint. FMM further adapts the knowledge to the specific domain to address domain shift. We also introduce a fine-grained grass segmentation dataset and demonstrate, through experiments on two datasets, that our method achieves a significant improvement of 2.57 mIoU on the grass dataset and 3.73 mIoU on the cloud dataset. The results highlight the potential of combining knowledge transfer and domain adaptation to overcome domain-related challenges and data limitations. The project page is available at https://xavierjiezou.github.io/KTDA/.
Abstract:Recent advances in Customized Concept Swapping (CCS) enable a text-to-image model to swap a concept in the source image with a customized target concept. However, the existing methods still face the challenges of inconsistency and inefficiency. They struggle to maintain consistency in both the foreground and background during concept swapping, especially when the shape difference is large between objects. Additionally, they either require time-consuming training processes or involve redundant calculations during inference. To tackle these issues, we introduce InstantSwap, a new CCS method that aims to handle sharp shape disparity at speed. Specifically, we first extract the bbox of the object in the source image automatically based on attention map analysis and leverage the bbox to achieve both foreground and background consistency. For background consistency, we remove the gradient outside the bbox during the swapping process so that the background is free from being modified. For foreground consistency, we employ a cross-attention mechanism to inject semantic information into both source and target concepts inside the box. This helps learn semantic-enhanced representations that encourage the swapping process to focus on the foreground objects. To improve swapping speed, we avoid computing gradients at each timestep but instead calculate them periodically to reduce the number of forward passes, which improves efficiency a lot with a little sacrifice on performance. Finally, we establish a benchmark dataset to facilitate comprehensive evaluation. Extensive evaluations demonstrate the superiority and versatility of InstantSwap. Project Page: https://instantswap.github.io/