Department of Computer Science and Technology, Tsinghua University, Beijing, China
Abstract:Recent advances in text-to-image diffusion models have been driven by the increasing availability of paired 2D data. However, the development of 3D diffusion models has been hindered by the scarcity of high-quality 3D data, resulting in less competitive performance compared to their 2D counterparts. To address this challenge, we propose repurposing pre-trained 2D diffusion models for 3D object generation. We introduce Gaussian Atlas, a novel representation that utilizes dense 2D grids, enabling the fine-tuning of 2D diffusion models to generate 3D Gaussians. Our approach demonstrates successful transfer learning from a pre-trained 2D diffusion model to a 2D manifold flattened from 3D structures. To support model training, we compile GaussianVerse, a large-scale dataset comprising 205K high-quality 3D Gaussian fittings of various 3D objects. Our experimental results show that text-to-image diffusion models can be effectively adapted for 3D content generation, bridging the gap between 2D and 3D modeling.
Abstract:As the artificial intelligence community advances into the era of large models with billions of parameters, distributed training and inference have become essential. While various parallelism strategies-data, model, sequence, and pipeline-have been successfully implemented for popular neural networks on main-stream hardware, optimizing the distributed deployment schedule requires extensive expertise and manual effort. Further more, while existing frameworks with most simple chain-like structures, they struggle with complex non-linear architectures. Mixture-of-experts and multi-modal models feature intricate MIMO and branch-rich topologies that require fine-grained operator-level parallelization beyond the capabilities of existing frameworks. We propose formulating parallelism planning as a scheduling optimization problem using mixed-integer programming. We propose a bi-level solution framework balancing optimality with computational efficiency, automatically generating effective distributed plans that capture both the heterogeneous structure of modern neural networks and the underlying hardware constraints. In experiments comparing against expert-designed strategies like DeepSeek's DualPipe, our framework achieves comparable or superior performance, reducing computational bubbles by half under the same memory constraints. The framework's versatility extends beyond throughput optimization to incorporate hardware utilization maximization, memory capacity constraints, and other considerations or potential strategies. Such capabilities position our solution as both a valuable research tool for exploring optimal parallelization strategies and a practical industrial solution for large-scale AI deployment.
Abstract:In this paper, we propose a framework, collective behavioral cloning (CBC), to learn the underlying interaction mechanism and control policy of a swarm system. Given the trajectory data of a swarm system, we propose a graph variational autoencoder (GVAE) to learn the local interaction graph. Based on the interaction graph and swarm trajectory, we use behavioral cloning to learn the control policy of the swarm system. To demonstrate the practicality of CBC, we deploy it on a real-world decentralized vision-based robot swarm system. A visual attention network is trained based on the learned interaction graph for online neighbor selection. Experimental results show that our method outperforms previous approaches in predicting both the interaction graph and swarm actions with higher accuracy. This work offers a promising approach for understanding interaction mechanisms and swarm dynamics in future swarm robotics research. Code and data are available.
Abstract:Remote sensing image segmentation faces persistent challenges in distinguishing morphologically similar categories and adapting to diverse scene variations. While existing methods rely on implicit representation learning paradigms, they often fail to dynamically adjust semantic embeddings according to contextual cues, leading to suboptimal performance in fine-grained scenarios such as cloud thickness differentiation. This work introduces a dynamic dictionary learning framework that explicitly models class ID embeddings through iterative refinement. The core contribution lies in a novel dictionary construction mechanism, where class-aware semantic embeddings are progressively updated via multi-stage alternating cross-attention querying between image features and dictionary embeddings. This process enables adaptive representation learning tailored to input-specific characteristics, effectively resolving ambiguities in intra-class heterogeneity and inter-class homogeneity. To further enhance discriminability, a contrastive constraint is applied to the dictionary space, ensuring compact intra-class distributions while maximizing inter-class separability. Extensive experiments across both coarse- and fine-grained datasets demonstrate consistent improvements over state-of-the-art methods, particularly in two online test benchmarks (LoveDA and UAVid). Code is available at https://anonymous.4open.science/r/D2LS-8267/.
Abstract:Minimally invasive surgery (MIS) has transformed clinical practice by reducing recovery times, minimizing complications, and enhancing precision. Nonetheless, MIS inherently relies on indirect visualization and precise instrument control, posing unique challenges. Recent advances in artificial intelligence have enabled real-time surgical scene understanding through techniques such as image classification, object detection, and segmentation, with scene reconstruction emerging as a key element for enhanced intraoperative guidance. Although neural radiance fields (NeRFs) have been explored for this purpose, their substantial data requirements and slow rendering inhibit real-time performance. In contrast, 3D Gaussian Splatting (3DGS) offers a more efficient alternative, achieving state-of-the-art performance in dynamic surgical scene reconstruction. In this work, we introduce Feature-EndoGaussian (FEG), an extension of 3DGS that integrates 2D segmentation cues into 3D rendering to enable real-time semantic and scene reconstruction. By leveraging pretrained segmentation foundation models, FEG incorporates semantic feature distillation within the Gaussian deformation framework, thereby enhancing both reconstruction fidelity and segmentation accuracy. On the EndoNeRF dataset, FEG achieves superior performance (SSIM of 0.97, PSNR of 39.08, and LPIPS of 0.03) compared to leading methods. Additionally, on the EndoVis18 dataset, FEG demonstrates competitive class-wise segmentation metrics while balancing model size and real-time performance.
Abstract:Real-world Vehicle Routing Problems (VRPs) are characterized by a variety of practical constraints, making manual solver design both knowledge-intensive and time-consuming. Although there is increasing interest in automating the design of routing algorithms, existing research has explored only a limited array of VRP variants and fails to adequately address the complex and prevalent constraints encountered in real-world situations. To fill this gap, this paper introduces RoutBench, a benchmark of 1,000 VRP variants derived from 24 attributes, for evaluating the effectiveness of automatic routing solvers in addressing complex constraints. Along with RoutBench, we present the Automatic Routing Solver (ARS), which employs Large Language Model (LLM) agents to enhance a backbone algorithm framework by automatically generating constraint-aware heuristic code, based on problem descriptions and several representative constraints selected from a database. Our experiments show that ARS outperforms state-of-the-art LLM-based methods and commonly used solvers, automatically solving 91.67% of common VRPs and achieving at least a 30% improvement across all benchmarks.
Abstract:Recent advances in diffusion models have led to significant progress in audio-driven lip synchronization. However, existing methods typically rely on constrained audio-visual alignment priors or multi-stage learning of intermediate representations to force lip motion synthesis. This leads to complex training pipelines and limited motion naturalness. In this paper, we present SayAnything, a conditional video diffusion framework that directly synthesizes lip movements from audio input while preserving speaker identity. Specifically, we propose three specialized modules including identity preservation module, audio guidance module, and editing control module. Our novel design effectively balances different condition signals in the latent space, enabling precise control over appearance, motion, and region-specific generation without requiring additional supervision signals or intermediate representations. Extensive experiments demonstrate that SayAnything generates highly realistic videos with improved lip-teeth coherence, enabling unseen characters to say anything, while effectively generalizing to animated characters.
Abstract:Existing concealed object segmentation (COS) methods frequently utilize reversible strategies to address uncertain regions. However, these approaches are typically restricted to the mask domain, leaving the potential of the RGB domain underexplored. To address this, we propose the Reversible Unfolding Network (RUN), which applies reversible strategies across both mask and RGB domains through a theoretically grounded framework, enabling accurate segmentation. RUN first formulates a novel COS model by incorporating an extra residual sparsity constraint to minimize segmentation uncertainties. The iterative optimization steps of the proposed model are then unfolded into a multistage network, with each step corresponding to a stage. Each stage of RUN consists of two reversible modules: the Segmentation-Oriented Foreground Separation (SOFS) module and the Reconstruction-Oriented Background Extraction (ROBE) module. SOFS applies the reversible strategy at the mask level and introduces Reversible State Space to capture non-local information. ROBE extends this to the RGB domain, employing a reconstruction network to address conflicting foreground and background regions identified as distortion-prone areas, which arise from their separate estimation by independent modules. As the stages progress, RUN gradually facilitates reversible modeling of foreground and background in both the mask and RGB domains, directing the network's attention to uncertain regions and mitigating false-positive and false-negative results. Extensive experiments demonstrate the superior performance of RUN and highlight the potential of unfolding-based frameworks for COS and other high-level vision tasks. We will release the code and models.
Abstract:Vision language model (VLM) has been designed for large scale image-text alignment as a pretrained foundation model. For downstream few shot classification tasks, parameter efficient fine-tuning (PEFT) VLM has gained much popularity in the computer vision community. PEFT methods like prompt tuning and linear adapter have been studied for fine-tuning VLM while low rank adaptation (LoRA) algorithm has rarely been considered for few shot fine-tuning VLM. The main obstacle to use LoRA for few shot fine-tuning is the catastrophic forgetting problem. Because the visual language alignment knowledge is important for the generality in few shot learning, whereas low rank adaptation interferes with the most informative direction of the pretrained weight matrix. We propose the complementary subspace low rank adaptation (Comp-LoRA) method to regularize the catastrophic forgetting problem in few shot VLM finetuning. In detail, we optimize the low rank matrix in the complementary subspace, thus preserving the general vision language alignment ability of VLM when learning the novel few shot information. We conduct comparison experiments of the proposed Comp-LoRA method and other PEFT methods on fine-tuning VLM for few shot classification. And we also present the suppression on the catastrophic forgetting problem of our proposed method against directly applying LoRA to VLM. The results show that the proposed method surpasses the baseline method by about +1.0\% Top-1 accuracy and preserves the VLM zero-shot performance over the baseline method by about +1.3\% Top-1 accuracy.
Abstract:Unmanned Aerial Vehicles (UAVs) are increasingly adopted in modern communication networks. However, challenges in decision-making and digital modeling continue to impede their rapid advancement. Reinforcement Learning (RL) algorithms face limitations such as low sample efficiency and limited data versatility, further magnified in UAV communication scenarios. Moreover, Digital Twin (DT) modeling introduces substantial decision-making and data management complexities. RL models, often integrated into DT frameworks, require extensive training data to achieve accurate predictions. In contrast to traditional approaches that focus on class boundaries, Diffusion Models (DMs), a new class of generative AI, learn the underlying probability distribution from the training data and can generate trustworthy new patterns based on this learned distribution. This paper explores the integration of DMs with RL and DT to effectively address these challenges. By combining the data generation capabilities of DMs with the decision-making framework of RL and the modeling accuracy of DT, the integration improves the adaptability and real-time performance of UAV communication. Moreover, the study shows how DMs can alleviate data scarcity, improve policy networks, and optimize dynamic modeling, providing a robust solution for complex UAV communication scenarios.