Beijing University of Posts and Telecommunications
Abstract:Generative adversarial networks (GANs) have made remarkable achievements in synthesizing images in recent years. Typically, training GANs requires massive data, and the performance of GANs deteriorates significantly when training data is limited. To improve the synthesis performance of GANs in low-data regimes, existing approaches use various data augmentation techniques to enlarge the training sets. However, it is identified that these augmentation techniques may leak or even alter the data distribution. To remedy this, we propose an adversarial semantic augmentation (ASA) technique to enlarge the training data at the semantic level instead of the image level. Concretely, considering semantic features usually encode informative information of images, we estimate the covariance matrices of semantic features for both real and generated images to find meaningful transformation directions. Such directions translate original features to another semantic representation, e.g., changing the backgrounds or expressions of the human face dataset. Moreover, we derive an upper bound of the expected adversarial loss. By optimizing the upper bound, our semantic augmentation is implicitly achieved. Such design avoids redundant sampling of the augmented features and introduces negligible computation overhead, making our approach computation efficient. Extensive experiments on both few-shot and large-scale datasets demonstrate that our method consistently improve the synthesis quality under various data regimes, and further visualized and analytic results suggesting satisfactory versatility of our proposed method.
Abstract:Magnetic Resonance Imaging (MRI) offers critical insights into microstructural details, however, the spatial resolution of standard 1.5T imaging systems is often limited. In contrast, 7T MRI provides significantly enhanced spatial resolution, enabling finer visualization of anatomical structures. Though this, the high cost and limited availability of 7T MRI hinder its widespread use in clinical settings. To address this challenge, a novel Super-Resolution (SR) model is proposed to generate 7T-like MRI from standard 1.5T MRI scans. Our approach leverages a diffusion-based architecture, incorporating gradient nonlinearity correction and bias field correction data from 7T imaging as guidance. Moreover, to improve deployability, a progressive distillation strategy is introduced. Specifically, the student model refines the 7T SR task with steps, leveraging feature maps from the inference phase of the teacher model as guidance, aiming to allow the student model to achieve progressively 7T SR performance with a smaller, deployable model size. Experimental results demonstrate that our baseline teacher model achieves state-of-the-art SR performance. The student model, while lightweight, sacrifices minimal performance. Furthermore, the student model is capable of accepting MRI inputs at varying resolutions without the need for retraining, significantly further enhancing deployment flexibility. The clinical relevance of our proposed method is validated using clinical data from Massachusetts General Hospital. Our code is available at https://github.com/ZWang78/SR.
Abstract:In autonomous driving, The perception capabilities of the ego-vehicle can be improved with roadside sensors, which can provide a holistic view of the environment. However, existing monocular detection methods designed for vehicle cameras are not suitable for roadside cameras due to viewpoint domain gaps. To bridge this gap and Improve ROAdside Monocular 3D object detection, we propose IROAM, a semantic-geometry decoupled contrastive learning framework, which takes vehicle-side and roadside data as input simultaneously. IROAM has two significant modules. In-Domain Query Interaction module utilizes a transformer to learn content and depth information for each domain and outputs object queries. Cross-Domain Query Enhancement To learn better feature representations from two domains, Cross-Domain Query Enhancement decouples queries into semantic and geometry parts and only the former is used for contrastive learning. Experiments demonstrate the effectiveness of IROAM in improving roadside detector's performance. The results validate that IROAM has the capabilities to learn cross-domain information.
Abstract:We present a modular pipeline that automates the generation of stealthy jailbreak prompts derived from high-level content policies, enhancing LLM content moderation. First, we address query inefficiency and jailbreak strength by developing Graph of Attacks with Pruning (GAP), a method that utilizes strategies from prior jailbreaks, resulting in 92% attack success rate on GPT-3.5 using only 54% of the queries of the prior algorithm. Second, we address the cold-start issue by automatically generating seed prompts from the high-level policy using LLMs. Finally, we demonstrate the utility of these generated jailbreak prompts of improving content moderation by fine-tuning PromptGuard, a model trained to detect jailbreaks, increasing its accuracy on the Toxic-Chat dataset from 5.1% to 93.89%.
Abstract:Reconfigurable intelligent surfaces (RISs) have been recognized as a revolutionary technology for future wireless networks. However, RIS-assisted communications have to continuously tune phase-shifts relying on accurate channel state information (CSI) that is generally difficult to obtain due to the large number of RIS channels. The joint design of CSI acquisition and subsection RIS phase-shifts remains a significant challenge in dynamic environments. In this paper, we propose a diffusion-enhanced decision Transformer (DEDT) framework consisting of a diffusion model (DM) designed for efficient CSI acquisition and a decision Transformer (DT) utilized for phase-shift optimizations. Specifically, we first propose a novel DM mechanism, i.e., conditional imputation based on denoising diffusion probabilistic model, for rapidly acquiring real-time full CSI by exploiting the spatial correlations inherent in wireless channels. Then, we optimize beamforming schemes based on the DT architecture, which pre-trains on historical environments to establish a robust policy model. Next, we incorporate a fine-tuning mechanism to ensure rapid beamforming adaptation to new environments, eliminating the retraining process that is imperative in conventional reinforcement learning (RL) methods. Simulation results demonstrate that DEDT can enhance efficiency and adaptability of RIS-aided communications with fluctuating channel conditions compared to state-of-the-art RL methods.
Abstract:Foundation models have revolutionized the paradigm of digital pathology, as they leverage general-purpose features to emulate real-world pathological practices, enabling the quantitative analysis of critical histological patterns and the dissection of cancer-specific signals. However, these static general features constrain the flexibility and pathological relevance in the ever-evolving needs of clinical applications, hindering the broad use of the current models. Here we introduce PathFiT, a dynamic feature learning method that can be effortlessly plugged into various pathology foundation models to unlock their adaptability. Meanwhile, PathFiT performs seamless implementation across diverse pathology applications regardless of downstream specificity. To validate PathFiT, we construct a digital pathology benchmark with over 20 terabytes of Internet and real-world data comprising 28 H\&E-stained tasks and 7 specialized imaging tasks including Masson's Trichrome staining and immunofluorescence images. By applying PathFiT to the representative pathology foundation models, we demonstrate state-of-the-art performance on 34 out of 35 tasks, with significant improvements on 23 tasks and outperforming by 10.20% on specialized imaging tasks. The superior performance and versatility of PathFiT open up new avenues in computational pathology.
Abstract:Automatic Radiology Report Generation (RRG) is an important topic for alleviating the substantial workload of radiologists. Existing RRG approaches rely on supervised regression based on different architectures or additional knowledge injection,while the generated report may not align optimally with radiologists' preferences. Especially, since the preferences of radiologists are inherently heterogeneous and multidimensional, e.g., some may prioritize report fluency, while others emphasize clinical accuracy. To address this problem,we propose a new RRG method via Multi-objective Preference Optimization (MPO) to align the pre-trained RRG model with multiple human preferences, which can be formulated by multi-dimensional reward functions and optimized by multi-objective reinforcement learning (RL). Specifically, we use a preference vector to represent the weight of preferences and use it as a condition for the RRG model. Then, a linearly weighed reward is obtained via a dot product between the preference vector and multi-dimensional reward.Next,the RRG model is optimized to align with the preference vector by optimizing such a reward via RL. In the training stage,we randomly sample diverse preference vectors from the preference space and align the model by optimizing the weighted multi-objective rewards, which leads to an optimal policy on the entire preference space. When inference,our model can generate reports aligned with specific preferences without further fine-tuning. Extensive experiments on two public datasets show the proposed method can generate reports that cater to different preferences in a single model and achieve state-of-the-art performance.
Abstract:The rotary and movable antennas (ROMA) technology is efficient in enhancing wireless network capacity by adjusting both the antenna spacing and three-dimensional (3D) rotation of antenna surfaces, based on the spatial distribution of users and channel statistics. Applying ROMA to high-speed rail (HSR) wireless communications can significantly improve system performance in terms of array gain and spatial multiplexing. However, the rapidly changing channel conditions in HSR scenarios present challenges for ROMA configuration. In this correspondence, we propose a analytical framework for configuring ROMA-based extremely large-scale multiple-input-multiple-output (XL-MIMO) system in HSR scenarios based on spatial correlation. First, we develop a localization model based on a mobility-aware near-field beam training algorithm to determine the real-time position of the train relay antennas. Next, we derive the expression for channel orthogonality and antenna spacing based on the spatial correlation matrix, and obtain the optimal antenna spacing when the transceiver panels are aligned in parallel. Moreover, we propose an optimization algorithm for the rotation angle of the transceiver panels, leveraging the differential evolution method, to determine the optimal angle. Finally, numerical results are provided to validate the computational results and optimization algorithm.
Abstract:Decision transformers recast reinforcement learning as a conditional sequence generation problem, offering a simple but effective alternative to traditional value or policy-based methods. A recent key development in this area is the integration of prompting in decision transformers to facilitate few-shot policy generalization. However, current methods mainly use static prompt segments to guide rollouts, limiting their ability to provide context-specific guidance. Addressing this, we introduce a hierarchical prompting approach enabled by retrieval augmentation. Our method learns two layers of soft tokens as guiding prompts: (1) global tokens encapsulating task-level information about trajectories, and (2) adaptive tokens that deliver focused, timestep-specific instructions. The adaptive tokens are dynamically retrieved from a curated set of demonstration segments, ensuring context-aware guidance. Experiments across seven benchmark tasks in the MuJoCo and MetaWorld environments demonstrate the proposed approach consistently outperforms all baseline methods, suggesting that hierarchical prompting for decision transformers is an effective strategy to enable few-shot policy generalization.
Abstract:Visual Question Answering (VQA) systems are known for their poor performance in out-of-distribution datasets. An issue that was addressed in previous works through ensemble learning, answer re-ranking, or artificially growing the training set. In this work, we show for the first time that robust Visual Question Answering is attainable by simply enhancing the training strategy. Our proposed approach, Task Progressive Curriculum Learning (TPCL), breaks the main VQA problem into smaller, easier tasks based on the question type. Then, it progressively trains the model on a (carefully crafted) sequence of tasks. We further support the method by a novel distributional-based difficulty measurer. Our approach is conceptually simple, model-agnostic, and easy to implement. We demonstrate TPCL effectiveness through a comprehensive evaluation on standard datasets. Without either data augmentation or explicit debiasing mechanism, it achieves state-of-the-art on VQA-CP v2, VQA-CP v1 and VQA v2 datasets. Extensive experiments demonstrate that TPCL outperforms the most competitive robust VQA approaches by more than 5% and 7% on VQA-CP v2 and VQA-CP v1; respectively. TPCL also can boost VQA baseline backbone performance by up to 28.5%.