Beijing University of Posts and Telecommunications
Abstract:Automatic Radiology Report Generation (RRG) is an important topic for alleviating the substantial workload of radiologists. Existing RRG approaches rely on supervised regression based on different architectures or additional knowledge injection,while the generated report may not align optimally with radiologists' preferences. Especially, since the preferences of radiologists are inherently heterogeneous and multidimensional, e.g., some may prioritize report fluency, while others emphasize clinical accuracy. To address this problem,we propose a new RRG method via Multi-objective Preference Optimization (MPO) to align the pre-trained RRG model with multiple human preferences, which can be formulated by multi-dimensional reward functions and optimized by multi-objective reinforcement learning (RL). Specifically, we use a preference vector to represent the weight of preferences and use it as a condition for the RRG model. Then, a linearly weighed reward is obtained via a dot product between the preference vector and multi-dimensional reward.Next,the RRG model is optimized to align with the preference vector by optimizing such a reward via RL. In the training stage,we randomly sample diverse preference vectors from the preference space and align the model by optimizing the weighted multi-objective rewards, which leads to an optimal policy on the entire preference space. When inference,our model can generate reports aligned with specific preferences without further fine-tuning. Extensive experiments on two public datasets show the proposed method can generate reports that cater to different preferences in a single model and achieve state-of-the-art performance.
Abstract:The rotary and movable antennas (ROMA) technology is efficient in enhancing wireless network capacity by adjusting both the antenna spacing and three-dimensional (3D) rotation of antenna surfaces, based on the spatial distribution of users and channel statistics. Applying ROMA to high-speed rail (HSR) wireless communications can significantly improve system performance in terms of array gain and spatial multiplexing. However, the rapidly changing channel conditions in HSR scenarios present challenges for ROMA configuration. In this correspondence, we propose a analytical framework for configuring ROMA-based extremely large-scale multiple-input-multiple-output (XL-MIMO) system in HSR scenarios based on spatial correlation. First, we develop a localization model based on a mobility-aware near-field beam training algorithm to determine the real-time position of the train relay antennas. Next, we derive the expression for channel orthogonality and antenna spacing based on the spatial correlation matrix, and obtain the optimal antenna spacing when the transceiver panels are aligned in parallel. Moreover, we propose an optimization algorithm for the rotation angle of the transceiver panels, leveraging the differential evolution method, to determine the optimal angle. Finally, numerical results are provided to validate the computational results and optimization algorithm.
Abstract:Decision transformers recast reinforcement learning as a conditional sequence generation problem, offering a simple but effective alternative to traditional value or policy-based methods. A recent key development in this area is the integration of prompting in decision transformers to facilitate few-shot policy generalization. However, current methods mainly use static prompt segments to guide rollouts, limiting their ability to provide context-specific guidance. Addressing this, we introduce a hierarchical prompting approach enabled by retrieval augmentation. Our method learns two layers of soft tokens as guiding prompts: (1) global tokens encapsulating task-level information about trajectories, and (2) adaptive tokens that deliver focused, timestep-specific instructions. The adaptive tokens are dynamically retrieved from a curated set of demonstration segments, ensuring context-aware guidance. Experiments across seven benchmark tasks in the MuJoCo and MetaWorld environments demonstrate the proposed approach consistently outperforms all baseline methods, suggesting that hierarchical prompting for decision transformers is an effective strategy to enable few-shot policy generalization.
Abstract:Visual Question Answering (VQA) systems are known for their poor performance in out-of-distribution datasets. An issue that was addressed in previous works through ensemble learning, answer re-ranking, or artificially growing the training set. In this work, we show for the first time that robust Visual Question Answering is attainable by simply enhancing the training strategy. Our proposed approach, Task Progressive Curriculum Learning (TPCL), breaks the main VQA problem into smaller, easier tasks based on the question type. Then, it progressively trains the model on a (carefully crafted) sequence of tasks. We further support the method by a novel distributional-based difficulty measurer. Our approach is conceptually simple, model-agnostic, and easy to implement. We demonstrate TPCL effectiveness through a comprehensive evaluation on standard datasets. Without either data augmentation or explicit debiasing mechanism, it achieves state-of-the-art on VQA-CP v2, VQA-CP v1 and VQA v2 datasets. Extensive experiments demonstrate that TPCL outperforms the most competitive robust VQA approaches by more than 5% and 7% on VQA-CP v2 and VQA-CP v1; respectively. TPCL also can boost VQA baseline backbone performance by up to 28.5%.
Abstract:The emergence of the metaverse has boosted productivity and creativity, driving real-time updates and personalized content, which will substantially increase data traffic. However, current bit-oriented communication networks struggle to manage this high volume of dynamic information, restricting metaverse applications interactivity. To address this research gap, we propose a goal-oriented semantic communication (GSC) framework for metaverse. Building on an existing metaverse wireless construction task, our proposed GSC framework includes an hourglass network-based (HgNet) encoder to extract semantic information of objects in the metaverse; and a semantic decoder that uses this extracted information to reconstruct the metaverse content after wireless transmission, enabling efficient communication and real-time object behaviour updates to the scenery for metaverse construction task. To overcome the wireless channel noise at the receiver, we design an optimal transport (OT)-enabled semantic denoiser, which enhances the accuracy of metaverse scenery through wireless communication. Experimental results show that compared to the conventional metaverse construction, our proposed GSC framework significantly reduces wireless metaverse construction latency by 92.6\%, while improving metaverse object status accuracy and viewing experience by 45.6\% and 44.7\%, respectively.
Abstract:Recent advances in large language models (LLMs) show the potential of using LLMs as evaluators for assessing the quality of text generations from LLMs. However, applying LLM evaluators naively to compare or judge between different systems can lead to unreliable results due to the intrinsic win rate estimation bias of LLM evaluators. In order to mitigate this problem, we propose two calibration methods, Bayesian Win Rate Sampling (BWRS) and Bayesian Dawid-Skene, both of which leverage Bayesian inference to more accurately infer the true win rate of generative language models. We empirically validate our methods on six datasets covering story generation, summarization, and instruction following tasks. We show that both our methods are effective in improving the accuracy of win rate estimation using LLMs as evaluators, offering a promising direction for reliable automatic text quality evaluation.
Abstract:Recent advancements in image mixing and generative data augmentation have shown promise in enhancing image classification. However, these techniques face the challenge of balancing semantic fidelity with diversity. Specifically, image mixing involves interpolating two images to create a new one, but this pixel-level interpolation can compromise fidelity. Generative augmentation uses text-to-image generative models to synthesize or modify images, often limiting diversity to avoid generating out-of-distribution data that potentially affects accuracy. We propose that this fidelity-diversity dilemma partially stems from the whole-image paradigm of existing methods. Since an image comprises the class-dependent part (CDP) and the class-independent part (CIP), where each part has fundamentally different impacts on the image's fidelity, treating different parts uniformly can therefore be misleading. To address this fidelity-diversity dilemma, we introduce Decoupled Data Augmentation (De-DA), which resolves the dilemma by separating images into CDPs and CIPs and handling them adaptively. To maintain fidelity, we use generative models to modify real CDPs under controlled conditions, preserving semantic consistency. To enhance diversity, we replace the image's CIP with inter-class variants, creating diverse CDP-CIP combinations. Additionally, we implement an online randomized combination strategy during training to generate numerous distinct CDP-CIP combinations cost-effectively. Comprehensive empirical evaluations validate the effectiveness of our method.
Abstract:Knee osteoarthritis (KOA) is a prevalent musculoskeletal disorder, and X-rays are commonly used for its diagnosis due to their cost-effectiveness. Magnetic Resonance Imaging (MRI), on the other hand, offers detailed soft tissue visualization and has become a valuable supplementary diagnostic tool for KOA. Unfortunately, the high cost and limited accessibility of MRI hinder its widespread use, leaving many patients with KOA reliant solely on X-ray imaging. In this study, we introduce a novel diffusion-based Xray2MRI model capable of generating pseudo-MRI volumes from one single X-ray image. In addition to using X-rays as conditional input, our model integrates target depth, KOA probability distribution, and image intensity distribution modules to guide the synthesis process, ensuring that the generated corresponding slices accurately correspond to the anatomical structures. Experimental results demonstrate that by integrating information from X-rays with additional input data, our proposed approach is capable of generating pseudo-MRI sequences that approximate real MRI scans. Moreover, by increasing the inference times, the model achieves effective interpolation, further improving the continuity and smoothness of the generated MRI sequences, representing one promising initial attempt for cost-effective medical imaging solutions.
Abstract:Dynamic Graph Neural Networks (DyGNNs) have garnered increasing research attention for learning representations on evolving graphs. Despite their effectiveness, the limited expressive power of existing DyGNNs hinders them from capturing important evolving patterns of dynamic graphs. Although some works attempt to enhance expressive capability with heuristic features, there remains a lack of DyGNN frameworks with provable and quantifiable high-order expressive power. To address this research gap, we firstly propose the k-dimensional Dynamic WL tests (k-DWL) as the referencing algorithms to quantify the expressive power of DyGNNs. We demonstrate that the expressive power of existing DyGNNs is upper bounded by the 1-DWL test. To enhance the expressive power, we propose Dynamic Graph Neural Network with High-order expressive power (HopeDGN), which updates the representation of central node pair by aggregating the interaction history with neighboring node pairs. Our theoretical results demonstrate that HopeDGN can achieve expressive power equivalent to the 2-DWL test. We then present a Transformer-based implementation for the local variant of HopeDGN. Experimental results show that HopeDGN achieved performance improvements of up to 3.12%, demonstrating the effectiveness of HopeDGN.
Abstract:End-to-end autonomous driving with vision-only is not only more cost-effective compared to LiDAR-vision fusion but also more reliable than traditional methods. To achieve a economical and robust purely visual autonomous driving system, we propose RenderWorld, a vision-only end-to-end autonomous driving framework, which generates 3D occupancy labels using a self-supervised gaussian-based Img2Occ Module, then encodes the labels by AM-VAE, and uses world model for forecasting and planning. RenderWorld employs Gaussian Splatting to represent 3D scenes and render 2D images greatly improves segmentation accuracy and reduces GPU memory consumption compared with NeRF-based methods. By applying AM-VAE to encode air and non-air separately, RenderWorld achieves more fine-grained scene element representation, leading to state-of-the-art performance in both 4D occupancy forecasting and motion planning from autoregressive world model.