Beijing University of Posts and Telecommunications
Abstract:Magnetic Resonance Imaging (MRI) at lower field strengths (e.g., 3T) suffers from limited spatial resolution, making it challenging to capture fine anatomical details essential for clinical diagnosis and neuroimaging research. To overcome this limitation, we propose MoEDiff-SR, a Mixture of Experts (MoE)-guided diffusion model for region-adaptive MRI Super-Resolution (SR). Unlike conventional diffusion-based SR models that apply a uniform denoising process across the entire image, MoEDiff-SR dynamically selects specialized denoising experts at a fine-grained token level, ensuring region-specific adaptation and enhanced SR performance. Specifically, our approach first employs a Transformer-based feature extractor to compute multi-scale patch embeddings, capturing both global structural information and local texture details. The extracted feature embeddings are then fed into an MoE gating network, which assigns adaptive weights to multiple diffusion-based denoisers, each specializing in different brain MRI characteristics, such as centrum semiovale, sulcal and gyral cortex, and grey-white matter junction. The final output is produced by aggregating the denoised results from these specialized experts according to dynamically assigned gating probabilities. Experimental results demonstrate that MoEDiff-SR outperforms existing state-of-the-art methods in terms of quantitative image quality metrics, perceptual fidelity, and computational efficiency. Difference maps from each expert further highlight their distinct specializations, confirming the effective region-specific denoising capability and the interpretability of expert contributions. Additionally, clinical evaluation validates its superior diagnostic capability in identifying subtle pathological features, emphasizing its practical relevance in clinical neuroimaging. Our code is available at https://github.com/ZWang78/MoEDiff-SR.
Abstract:Neural Radiance Fields (NeRF) is a cutting-edge neural network-based technique for novel view synthesis in 3D reconstruction. However, its significant computational demands pose challenges for deployment on mobile devices. While mesh-based NeRF solutions have shown potential in achieving real-time rendering on mobile platforms, they often fail to deliver high-quality reconstructions when rendering practical complex scenes. Additionally, the non-negligible memory overhead caused by pre-computed intermediate results complicates their practical application. To overcome these challenges, we present NeRFlex, a resource-aware, high-resolution, real-time rendering framework for complex scenes on mobile devices. NeRFlex integrates mobile NeRF rendering with multi-NeRF representations that decompose a scene into multiple sub-scenes, each represented by an individual NeRF network. Crucially, NeRFlex considers both memory and computation constraints as first-class citizens and redesigns the reconstruction process accordingly. NeRFlex first designs a detail-oriented segmentation module to identify sub-scenes with high-frequency details. For each NeRF network, a lightweight profiler, built on domain knowledge, is used to accurately map configurations to visual quality and memory usage. Based on these insights and the resource constraints on mobile devices, NeRFlex presents a dynamic programming algorithm to efficiently determine configurations for all NeRF representations, despite the NP-hardness of the original decision problem. Extensive experiments on real-world datasets and mobile devices demonstrate that NeRFlex achieves real-time, high-quality rendering on commercial mobile devices.
Abstract:The complexity and variability inherent in high-resolution pathological images present significant challenges in computational pathology. While pathology foundation models leveraging AI have catalyzed transformative advancements, their development demands large-scale datasets, considerable storage capacity, and substantial computational resources. Furthermore, ensuring their clinical applicability and generalizability requires rigorous validation across a broad spectrum of clinical tasks. Here, we present PathOrchestra, a versatile pathology foundation model trained via self-supervised learning on a dataset comprising 300K pathological slides from 20 tissue and organ types across multiple centers. The model was rigorously evaluated on 112 clinical tasks using a combination of 61 private and 51 public datasets. These tasks encompass digital slide preprocessing, pan-cancer classification, lesion identification, multi-cancer subtype classification, biomarker assessment, gene expression prediction, and the generation of structured reports. PathOrchestra demonstrated exceptional performance across 27,755 WSIs and 9,415,729 ROIs, achieving over 0.950 accuracy in 47 tasks, including pan-cancer classification across various organs, lymphoma subtype diagnosis, and bladder cancer screening. Notably, it is the first model to generate structured reports for high-incidence colorectal cancer and diagnostically complex lymphoma-areas that are infrequently addressed by foundational models but hold immense clinical potential. Overall, PathOrchestra exemplifies the feasibility and efficacy of a large-scale, self-supervised pathology foundation model, validated across a broad range of clinical-grade tasks. Its high accuracy and reduced reliance on extensive data annotation underline its potential for clinical integration, offering a pathway toward more efficient and high-quality medical services.
Abstract:Generally, X-ray, as an inexpensive and popular medical imaging technique, is widely chosen by medical practitioners. With the development of medical technology, Magnetic Resonance Imaging (MRI), an advanced medical imaging technique, has already become a supplementary diagnostic option for the diagnosis of KOA. We propose in this paper a deep-learning-based approach for generating MRI from one corresponding X-ray. Our method uses the hidden variables of a Convolutional Auto-Encoder (CAE) model, trained for reconstructing X-ray image, as inputs of a generator model to provide 3D MRI.
Abstract:Gradient optimization-based adversarial attack methods automate the learning of adversarial triggers to generate jailbreak prompts or leak system prompts. In this work, we take a closer look at the optimization objective of adversarial trigger learning and propose ATLA: Adversarial Trigger Learning with Augmented objectives. ATLA improves the negative log-likelihood loss used by previous studies into a weighted loss formulation that encourages the learned adversarial triggers to optimize more towards response format tokens. This enables ATLA to learn an adversarial trigger from just one query-response pair and the learned trigger generalizes well to other similar queries. We further design a variation to augment trigger optimization with an auxiliary loss that suppresses evasive responses. We showcase how to use ATLA to learn adversarial suffixes jailbreaking LLMs and to extract hidden system prompts. Empirically we demonstrate that ATLA consistently outperforms current state-of-the-art techniques, achieving nearly 100% success in attacking while requiring 80% fewer queries. ATLA learned jailbreak suffixes demonstrate high generalization to unseen queries and transfer well to new LLMs.
Abstract:As the computational needs of Large Vision-Language Models (LVLMs) increase, visual token pruning has proven effective in improving inference speed and memory efficiency. Traditional pruning methods in LVLMs predominantly focus on attention scores to determine token relevance, overlooking critical aspects such as spatial position and token similarity. To this end, we introduce AdaptPrune, a novel plug-and-play training-free pruning method that builds on conventional attention-based pruning by integrating spatial distance and token similarity with an adaptive NMS approach. Our method is based on several observed phenomena in large models: the positional bias in the model's image attention and the redundancy of token information ignored by previous approaches. By integrating attention, spatial, and similarity information, our approach ensures a comprehensive evaluation of token importance and substantially refines the pruning decisions. Our method has been extensively tested across various LVLMs and benchmarks, confirming its robustness and adaptability. The results demonstrate that AdaptPrune consistently outperforms existing methods across various pruning ratios. Code is available at https://github.com/bzluan/AdaptPrune.
Abstract:Autoregressive models (ARMs) have become the workhorse for sequence generation tasks, since many problems can be modeled as next-token prediction. While there appears to be a natural ordering for text (i.e., left-to-right), for many data types, such as graphs, the canonical ordering is less obvious. To address this problem, we introduce a variant of ARM that generates high-dimensional data using a probabilistic ordering that is sequentially inferred from data. This model incorporates a trainable probability distribution, referred to as an \emph{order-policy}, that dynamically decides the autoregressive order in a state-dependent manner. To train the model, we introduce a variational lower bound on the exact log-likelihood, which we optimize with stochastic gradient estimation. We demonstrate experimentally that our method can learn meaningful autoregressive orderings in image and graph generation. On the challenging domain of molecular graph generation, we achieve state-of-the-art results on the QM9 and ZINC250k benchmarks, evaluated using the Fr\'{e}chet ChemNet Distance (FCD).
Abstract:Large Language Models (LLMs) have shown remarkable capabilities as autonomous agents, yet existing benchmarks either focus on single-agent tasks or are confined to narrow domains, failing to capture the dynamics of multi-agent coordination and competition. In this paper, we introduce MultiAgentBench, a comprehensive benchmark designed to evaluate LLM-based multi-agent systems across diverse, interactive scenarios. Our framework measures not only task completion but also the quality of collaboration and competition using novel, milestone-based key performance indicators. Moreover, we evaluate various coordination protocols (including star, chain, tree, and graph topologies) and innovative strategies such as group discussion and cognitive planning. Notably, gpt-4o-mini reaches the average highest task score, graph structure performs the best among coordination protocols in the research scenario, and cognitive planning improves milestone achievement rates by 3%. Code and datasets are public available at https://github.com/MultiagentBench/MARBLE.
Abstract:Cooperative perception enhances the individual perception capabilities of autonomous vehicles (AVs) by providing a comprehensive view of the environment. However, balancing perception performance and transmission costs remains a significant challenge. Current approaches that transmit region-level features across agents are limited in interpretability and demand substantial bandwidth, making them unsuitable for practical applications. In this work, we propose CoopDETR, a novel cooperative perception framework that introduces object-level feature cooperation via object query. Our framework consists of two key modules: single-agent query generation, which efficiently encodes raw sensor data into object queries, reducing transmission cost while preserving essential information for detection; and cross-agent query fusion, which includes Spatial Query Matching (SQM) and Object Query Aggregation (OQA) to enable effective interaction between queries. Our experiments on the OPV2V and V2XSet datasets demonstrate that CoopDETR achieves state-of-the-art performance and significantly reduces transmission costs to 1/782 of previous methods.
Abstract:Jailbreaking large-language models (LLMs) involves testing their robustness against adversarial prompts and evaluating their ability to withstand prompt attacks that could elicit unauthorized or malicious responses. In this paper, we present TurboFuzzLLM, a mutation-based fuzzing technique for efficiently finding a collection of effective jailbreaking templates that, when combined with harmful questions, can lead a target LLM to produce harmful responses through black-box access via user prompts. We describe the limitations of directly applying existing template-based attacking techniques in practice, and present functional and efficiency-focused upgrades we added to mutation-based fuzzing to generate effective jailbreaking templates automatically. TurboFuzzLLM achieves $\geq$ 95\% attack success rates (ASR) on public datasets for leading LLMs (including GPT-4o \& GPT-4 Turbo), shows impressive generalizability to unseen harmful questions, and helps in improving model defenses to prompt attacks.