Abstract:We consider a cell-free massive multiple-input multiple-output (mMIMO) network, where unmanned aerial vehicles (UAVs) equipped with multiple antennas serve as distributed UAV-access points (UAV-APs). These UAV-APs provide seamless coverage by jointly serving user equipments (UEs) with out predefined cell boundaries. However, high-capacity wireless networks face significant challenges due to fronthaul limitations in UAV-assisted architectures. This letter proposes a novel UAV-based cell-free mMIMO framework that leverages distributed UAV-APs to serve UEs while addressing the capacity constraints of wireless fronthaul links. We evaluate functional split Options 7.2 and 8 for the fronthaul links, aiming to maximize the minimum signal-to-interference-plus-noise ratio (SINR) among the UEs and minimize the power consumption by optimizing the transmit powers of UAV-APs and selectively activating them. Our analysis compares sub-6 GHz and millimeter wave (mmWave) bands for the fronthaul, showing that mmWave achieves superior SINR with lower power consumption, particularly under Option 8. Additionally, we determine the minimum fronthaul bandwidth required to activate a single UAV-AP under different split options.
Abstract:Massive multiple-input multiple-output (MIMO) systems exploit the spatial diversity achieved with an array of many antennas to perform spatial multiplexing of many users. Similar performance can be achieved using fewer antennas if movable antenna (MA) elements are used instead. MA-enabled arrays can dynamically change the antenna locations, mechanically or electrically, to achieve maximum spatial diversity for the current propagation conditions. However, optimizing the antenna locations for each channel realization is computationally excessive, requires channel knowledge for all conceivable locations, and requires rapid antenna movements, thus making real-time implementation cumbersome. To overcome these challenges, we propose a pre-optimized irregular array (PIA) concept, where the antenna locations at the base station are optimized a priori for a given coverage area. The objective is to maximize the average sum rate and we take a particle swarm optimization approach to solve it. Simulation results show that PIA achieves performance comparable to MA-enabled arrays while outperforming traditional uniform arrays. Hence, PIA offers a fixed yet efficient array deployment approach without the complexities associated with MA-enabled arrays.
Abstract:In vehicle-to-everything (V2X) applications, roadside units (RSUs) can be tasked with both sensing and communication functions to enable sensing-assisted communications. Recent studies have demonstrated that distance, angle, and velocity information obtained through sensing can be leveraged to reduce the overhead associated with communication beam tracking. In this work, we extend this concept to scenarios involving multiple distributed RSUs and distributed MIMO (multiple-input multiple-output) systems. We derive the state evolution model, formulate the extended Kalman-filter equations, and implement predictive beamforming for distributed MIMO. Simulation results indicate that, when compared with a co-located massive MIMO antenna array, distributed antennas lead to more uniform and robust sensing performance, coverage, and data rates, while the vehicular user is in motion.
Abstract:In massive MIMO systems, fully digital precoding offers high performance but has significant implementation complexity and energy consumption, particularly at millimeter frequencies and beyond. Hybrid analog-digital architectures provide a practical alternative by reducing the number of radio frequency (RF) chains while retaining performance in spatially sparse multipath scenarios. However, most hybrid precoder designs assume ideal, infinite-resolution analog phase shifters, which are impractical in real-world scenarios. Another practical constraint is the limited fronthaul capacity between the baseband processor and array, implying that each entry of the digital precoder must be picked from a finite set of quantization labels. To minimize the sum rate degradation caused by quantized analog and digital precoders, we propose novel designs inspired by the sphere decoding (SD) algorithm. We demonstrate numerically that our proposed designs outperform traditional methods, ensuring minimal sum rate loss in hybrid precoding systems with low-resolution phase shifters and limited fronthaul capacity.
Abstract:Federated Learning (FL) enables clients to share learning parameters instead of local data, reducing communication overhead. Traditional wireless networks face latency challenges with FL. In contrast, Cell-Free Massive MIMO (CFmMIMO) can serve multiple clients on shared resources, boosting spectral efficiency and reducing latency for large-scale FL. However, clients' communication resource limitations can hinder the completion of the FL training. To address this challenge, we propose an energy-efficient, low-latency FL framework featuring optimized uplink power allocation for seamless client-server collaboration. Our framework employs an adaptive quantization scheme, dynamically adjusting bit allocation for local gradient updates to reduce communication costs. We formulate a joint optimization problem covering FL model updates, local iterations, and power allocation, solved using sequential quadratic programming (SQP) to balance energy and latency. Additionally, clients use the AdaDelta method for local FL model updates, enhancing local model convergence compared to standard SGD, and we provide a comprehensive analysis of FL convergence with AdaDelta local updates. Numerical results show that, within the same energy and latency budgets, our power allocation scheme outperforms the Dinkelbach and max-sum rate methods by increasing the test accuracy up to $7$\% and $19$\%, respectively. Moreover, for the three power allocation methods, our proposed quantization scheme outperforms AQUILA and LAQ by increasing test accuracy by up to $36$\% and $35$\%, respectively.
Abstract:Physical layer multicasting is an efficient transmission technique that exploits the beamforming potential at the transmitting nodes and the broadcast nature of the wireless channel, together with the demand for the same content from several UEs. This paper addresses the max-min fair multigroup multicast beamforming optimization, which is an NP-hard problem. We propose a novel iterative elimination procedure coupled with semidefinite relaxation (SDR) to find the near-global optimum rank-1 beamforming vectors in a cell-free massive MIMO (multiple-input multiple-output) network setup. The proposed optimization procedure shows significant improvements in computational complexity and spectral efficiency performance compared to the SDR followed by the commonly used randomization procedure and the state-of-the-art difference-of-convex approximation algorithm. The significance of the proposed procedure is that it can be utilized as a rank reduction method for any problem in conjunction with SDR.
Abstract:Holographic multiple-input multiple-output (MIMO) systems represent a spatially constrained MIMO architecture with a massive number of antennas with small antenna spacing as a close approximation of a spatially continuous electromagnetic aperture. Accurate channel modeling is essential for realizing the full potential of this technology. In this paper, we investigate the impact of mutual coupling and spatial channel correlation on the estimation precision in holographic MIMO systems, as well as the importance of knowing their characteristics. We demonstrate that neglecting mutual coupling can lead to significant performance degradation for the minimum mean squared error estimator, emphasizing its critical consideration when designing estimation algorithms. Conversely, the least-squares estimator is resilient to mutual coupling but only yields good performance in high signal-to-noise ratio regimes. Our findings provide insights into how to design efficient estimation algorithms in holographic MIMO systems, aiding its practical implementation.
Abstract:Federated learning (FL) is a distributed learning framework where users train a global model by exchanging local model updates with a server instead of raw datasets, preserving data privacy and reducing communication overhead. However, the latency grows with the number of users and the model size, impeding the successful FL over traditional wireless networks with orthogonal access. Cell-free massive multiple-input multipleoutput (CFmMIMO) is a promising solution to serve numerous users on the same time/frequency resource with similar rates. This architecture greatly reduces uplink latency through spatial multiplexing but does not take application characteristics into account. In this paper, we co-optimize the physical layer with the FL application to mitigate the straggler effect. We introduce a novel adaptive mixed-resolution quantization scheme of the local gradient vector updates, where only the most essential entries are given high resolution. Thereafter, we propose a dynamic uplink power control scheme to manage the varying user rates and mitigate the straggler effect. The numerical results demonstrate that the proposed method achieves test accuracy comparable to classic FL while reducing communication overhead by at least 93% on the CIFAR-10, CIFAR-100, and Fashion-MNIST datasets. We compare our methods against AQUILA, Top-q, and LAQ, using the max-sum rate and Dinkelbach power control schemes. Our approach reduces the communication overhead by 75% and achieves 10% higher test accuracy than these benchmarks within a constrained total latency budget.
Abstract:This paper investigates coordinated beamforming using a modular linear array (MLA), composed of a pair of physically separated uniform linear arrays (ULAs), treated as sub-arrays. We focus on how such setups can give rise to near-field effects in 6G networks without requiring many antennas. Unlike conventional far-field beamforming, near-field beamforming enables simultaneous data service to multiple users at different distances in the same angular direction, offering significant multiplexing gains. We present a detailed analysis, including analytical expressions of the beamwidth and beamdepth for the MLA. Our findings reveal that using the MLA approach, we can remove approximately 36% of the antennas in the ULA while achieving the same level of beamfocusing.
Abstract:Cell-free massive MIMO improves the fairness among the user equipments (UEs) in the network by distributing many cooperating access points (APs) around the region while connecting them to a centralized cloud-computing unit that coordinates joint transmission/reception. However, the fiber cable deployment for the fronthaul transport network and activating all available antennas at each AP lead to increased deployment cost and power consumption for fronthaul signaling and processing. To overcome these challenges, in this work, we consider wireless fronthaul connections and propose a joint antenna activation and power allocation algorithm to minimize the end-to-end (from radio to cloud) power while satisfying the quality-of-service requirements of the UEs under wireless fronthaul capacity limitations. The results demonstrate that the proposed methodology of deactivating antennas at each AP reduces the power consumption by 50% and 84% compared to the benchmarks based on shutting down APs and minimizing only the transmit power, respectively.