Abstract:Federated Learning (FL) enables clients to share learning parameters instead of local data, reducing communication overhead. Traditional wireless networks face latency challenges with FL. In contrast, Cell-Free Massive MIMO (CFmMIMO) can serve multiple clients on shared resources, boosting spectral efficiency and reducing latency for large-scale FL. However, clients' communication resource limitations can hinder the completion of the FL training. To address this challenge, we propose an energy-efficient, low-latency FL framework featuring optimized uplink power allocation for seamless client-server collaboration. Our framework employs an adaptive quantization scheme, dynamically adjusting bit allocation for local gradient updates to reduce communication costs. We formulate a joint optimization problem covering FL model updates, local iterations, and power allocation, solved using sequential quadratic programming (SQP) to balance energy and latency. Additionally, clients use the AdaDelta method for local FL model updates, enhancing local model convergence compared to standard SGD, and we provide a comprehensive analysis of FL convergence with AdaDelta local updates. Numerical results show that, within the same energy and latency budgets, our power allocation scheme outperforms the Dinkelbach and max-sum rate methods by increasing the test accuracy up to $7$\% and $19$\%, respectively. Moreover, for the three power allocation methods, our proposed quantization scheme outperforms AQUILA and LAQ by increasing test accuracy by up to $36$\% and $35$\%, respectively.
Abstract:Holographic multiple-input multiple-output (MIMO) systems represent a spatially constrained MIMO architecture with a massive number of antennas with small antenna spacing as a close approximation of a spatially continuous electromagnetic aperture. Accurate channel modeling is essential for realizing the full potential of this technology. In this paper, we investigate the impact of mutual coupling and spatial channel correlation on the estimation precision in holographic MIMO systems, as well as the importance of knowing their characteristics. We demonstrate that neglecting mutual coupling can lead to significant performance degradation for the minimum mean squared error estimator, emphasizing its critical consideration when designing estimation algorithms. Conversely, the least-squares estimator is resilient to mutual coupling but only yields good performance in high signal-to-noise ratio regimes. Our findings provide insights into how to design efficient estimation algorithms in holographic MIMO systems, aiding its practical implementation.
Abstract:Physical layer multicasting is an efficient transmission technique that exploits the beamforming potential at the transmitting nodes and the broadcast nature of the wireless channel, together with the demand for the same content from several UEs. This paper addresses the max-min fair multigroup multicast beamforming optimization, which is an NP-hard problem. We propose a novel iterative elimination procedure coupled with semidefinite relaxation (SDR) to find the near-global optimum rank-1 beamforming vectors in a cell-free massive MIMO (multiple-input multiple-output) network setup. The proposed optimization procedure shows significant improvements in computational complexity and spectral efficiency performance compared to the SDR followed by the commonly used randomization procedure and the state-of-the-art difference-of-convex approximation algorithm. The significance of the proposed procedure is that it can be utilized as a rank reduction method for any problem in conjunction with SDR.
Abstract:Federated learning (FL) is a distributed learning framework where users train a global model by exchanging local model updates with a server instead of raw datasets, preserving data privacy and reducing communication overhead. However, the latency grows with the number of users and the model size, impeding the successful FL over traditional wireless networks with orthogonal access. Cell-free massive multiple-input multipleoutput (CFmMIMO) is a promising solution to serve numerous users on the same time/frequency resource with similar rates. This architecture greatly reduces uplink latency through spatial multiplexing but does not take application characteristics into account. In this paper, we co-optimize the physical layer with the FL application to mitigate the straggler effect. We introduce a novel adaptive mixed-resolution quantization scheme of the local gradient vector updates, where only the most essential entries are given high resolution. Thereafter, we propose a dynamic uplink power control scheme to manage the varying user rates and mitigate the straggler effect. The numerical results demonstrate that the proposed method achieves test accuracy comparable to classic FL while reducing communication overhead by at least 93% on the CIFAR-10, CIFAR-100, and Fashion-MNIST datasets. We compare our methods against AQUILA, Top-q, and LAQ, using the max-sum rate and Dinkelbach power control schemes. Our approach reduces the communication overhead by 75% and achieves 10% higher test accuracy than these benchmarks within a constrained total latency budget.
Abstract:This paper investigates coordinated beamforming using a modular linear array (MLA), composed of a pair of physically separated uniform linear arrays (ULAs), treated as sub-arrays. We focus on how such setups can give rise to near-field effects in 6G networks without requiring many antennas. Unlike conventional far-field beamforming, near-field beamforming enables simultaneous data service to multiple users at different distances in the same angular direction, offering significant multiplexing gains. We present a detailed analysis, including analytical expressions of the beamwidth and beamdepth for the MLA. Our findings reveal that using the MLA approach, we can remove approximately 36% of the antennas in the ULA while achieving the same level of beamfocusing.
Abstract:Cell-free massive MIMO improves the fairness among the user equipments (UEs) in the network by distributing many cooperating access points (APs) around the region while connecting them to a centralized cloud-computing unit that coordinates joint transmission/reception. However, the fiber cable deployment for the fronthaul transport network and activating all available antennas at each AP lead to increased deployment cost and power consumption for fronthaul signaling and processing. To overcome these challenges, in this work, we consider wireless fronthaul connections and propose a joint antenna activation and power allocation algorithm to minimize the end-to-end (from radio to cloud) power while satisfying the quality-of-service requirements of the UEs under wireless fronthaul capacity limitations. The results demonstrate that the proposed methodology of deactivating antennas at each AP reduces the power consumption by 50% and 84% compared to the benchmarks based on shutting down APs and minimizing only the transmit power, respectively.
Abstract:Reconfigurable intelligent surfaces (RISs) can improve the capacity of wireless communication links by passively beamforming the impinging signals in desired directions. This feature has been demonstrated both analytically and experimentally for conventional RISs, consisting of independently reflecting elements. To further enhance reconfigurability, a new architecture called beyond-diagonal RIS (BD-RIS) has been proposed. It allows for controllable signal flows between RIS elements, resulting in a non-diagonal reflection matrix, unlike the conventional RIS architecture. Previous studies on BD-RIS-assisted communications have predominantly considered single-antenna transmitters/receivers. One recent work provides an iterative capacity-improving algorithm for multiple-input multiple-output (MIMO) setups but without providing geometrical insights. In this paper, we derive the first closed-form capacity-maximizing BD-RIS reflection matrix for a MIMO channel. We describe how this solution pairs together propagation paths, how it behaves when the signal-to-noise ratio is high, and what capacity is achievable with ideal semi-unitary channel matrices. The analytical results are corroborated numerically.
Abstract:Terahertz (THz) communication is envisioned as a key technology for 6G and beyond wireless systems owing to its multi-GHz bandwidth. To maintain the same aperture area and the same link budget as the lower frequencies, ultra-massive multi-input and multi-output (UM-MIMO) with hybrid beamforming is promising. Nevertheless, the hardware imperfections particularly at THz frequencies, can degrade spectral efficiency and lead to a high symbol error rate (SER), which is often overlooked yet imperative to address in practical THz communication systems. In this paper, the hybrid beamforming is investigated for THz UM-MIMO systems accounting for comprehensive hardware imperfections, including DAC and ADC quantization errors, in-phase and quadrature imbalance (IQ imbalance), phase noise, amplitude and phase error of imperfect phase shifters and power amplifier (PA) nonlinearity. Then, a two-stage hardware imperfection compensation algorithm is proposed. A deep neural network (DNN) is developed in the first stage to represent the combined hardware imperfections, while in the second stage, the digital precoder in the transmitter (Tx) or the combiner in the receiver (Rx) is designed using NN to effectively compensate for these imperfections. Furthermore, to balance the performance and network complexity, three slimming methods including pruning, parameter sharing, and removing parts of the network are proposed and combined to slim the DNN in the first stage. Numerical results show that the Tx compensation can perform better than the Rx compensation. Additionally, using the combined slimming methods can reduce parameters by 97.2% and running time by 39.2% while maintaining nearly the same performance in both uncoded and coded systems.
Abstract:Accurate estimation of the cascaded channel from a user equipment (UE) to a base station (BS) via each reconfigurable intelligent surface (RIS) element is critical to realizing the full potential of the RIS's ability to control the overall channel. The number of parameters to be estimated is equal to the number of RIS elements, requiring an equal number of pilots unless an underlying structure can be identified. In this paper, we show how the spatial correlation inherent in the different RIS channels provides this desired structure. We first optimize the RIS phase-shift pattern using a much-reduced pilot length (determined by the rank of the spatial correlation matrices) to minimize the mean square error (MSE) in the channel estimation under electromagnetic interference. In addition to considering the linear minimum MSE (LMMSE) channel estimator, we propose a novel channel estimator that requires only knowledge of the array geometry while not requiring any user-specific statistical information. We call this the reduced-subspace least squares (RS-LS) estimator and optimize the RIS phase-shift pattern for it. This novel estimator significantly outperforms the conventional LS estimator. For both the LMMSE and RS-LS estimators, the proposed optimized RIS configurations result in significant channel estimation improvements over the benchmarks.
Abstract:Integrated sensing and communications (ISAC) allows networks to perform sensing alongside data transmission. While most ISAC studies focus on single-target, multi-user scenarios, multi-target sensing is scarcely researched. This letter examines the monostatic sensing performance of a multi-target massive MIMO system, aiming to minimize the sum of Cram\'er-Rao lower bounds (CRLBs) for target direction-of-arrival estimates while meeting user equipment (UE) rate requirements. We propose several precoding schemes, comparing sensing performance and complexity, and find that sensing-focused precoding with power allocation for communication achieves near-optimal performance with 20 times less complexity than joint precoding. Additionally, time-sharing between communication and sensing outperforms simple time division, highlighting the benefits of resource-sharing for ISAC.