Movable antennas represent an emerging field in telecommunication research and a potential approach to achieving higher data rates in multiple-input multiple-output (MIMO) communications when the total number of antennas is limited. Most solutions and analyses to date have been limited to \emph{narrowband} setups. This work complements the prior studies by quantifying the benefit of using movable antennas in \emph{wideband} MIMO communication systems. First, we derive a novel uplink wideband system model that also accounts for distortion from transceiver hardware impairments. We then formulate and solve an optimization task to maximize the average sum rate by adjusting the antenna positions using particle swarm optimization. Finally, the performance with movable antennas is compared with fixed uniform arrays and the derived theoretical upper bound. The numerical study concludes that the data rate improvement from movable antennas over other arrays heavily depends on the level of hardware impairments, the richness of the multi-path environments, and the number of subcarriers. The present study provides vital insights into the most suitable use cases for movable antennas in future wideband systems.