Sherman
Abstract:Large language models (LLMs) have demonstrated remarkable potential in solving complex tasks across diverse domains, typically by employing agentic workflows that follow detailed instructions and operational sequences. However, constructing these workflows requires significant human effort, limiting scalability and generalizability. Recent research has sought to automate the generation and optimization of these workflows, but existing methods still rely on initial manual setup and fall short of achieving fully automated and effective workflow generation. To address this challenge, we reformulate workflow optimization as a search problem over code-represented workflows, where LLM-invoking nodes are connected by edges. We introduce AFlow, an automated framework that efficiently explores this space using Monte Carlo Tree Search, iteratively refining workflows through code modification, tree-structured experience, and execution feedback. Empirical evaluations across six benchmark datasets demonstrate AFlow's efficacy, yielding a 5.7% average improvement over state-of-the-art baselines. Furthermore, AFlow enables smaller models to outperform GPT-4o on specific tasks at 4.55% of its inference cost in dollars. The code will be available at https://github.com/geekan/MetaGPT.
Abstract:Cell-free massive multiple-input multiple-output (mMIMO) is a promising technology to empower next-generation mobile communication networks. In this paper, to address the computational complexity associated with conventional fingerprint positioning, we consider a novel cooperative positioning architecture that involves certain relevant access points (APs) to establish positioning similarity coefficients. Then, we propose an innovative joint positioning and correction framework employing multi-agent reinforcement learning (MARL) to tackle the challenges of high-dimensional sophisticated signal processing, which mainly leverages on the received signal strength information for preliminary positioning, supplemented by the angle of arrival information to refine the initial position estimation. Moreover, to mitigate the bias effects originating from remote APs, we design a cooperative weighted K-nearest neighbor (Co-WKNN)-based estimation scheme to select APs with a high correlation to participate in user positioning. In the numerical results, we present comparisons of various user positioning schemes, which reveal that the proposed MARL-based positioning scheme with Co-WKNN can effectively improve positioning performance. It is important to note that the cooperative positioning architecture is a critical element in striking a balance between positioning performance and computational complexity.
Abstract:In this paper, we investigate a cell-free massive multiple-input multiple-output system, which exhibits great potential in enhancing the capabilities of next-generation mobile communication networks. We first study the distributed positioning problem to lay the groundwork for solving resource allocation and interference management issues. Instead of relying on computationally and spatially complex fingerprint positioning methods, we propose a novel two-stage distributed collaborative positioning architecture with multi-agent reinforcement learning (MARL) network, consisting of a received signal strength-based preliminary positioning network and an angle of arrival-based auxiliary correction network. Our experimental results demonstrate that the two-stage distributed collaborative user positioning architecture can outperform conventional fingerprint positioning methods in terms of positioning accuracy.
Abstract:Generating high-quality shooting scripts containing information such as scene and shot language is essential for short drama script generation. We collect 6,660 popular short drama episodes from the Internet, each with an average of 100 short episodes, and the total number of short episodes is about 80,000, with a total duration of about 2,000 hours and totaling 10 terabytes (TB). We perform keyframe extraction and annotation on each episode to obtain about 10,000,000 shooting scripts. We perform 100 script restorations on the extracted shooting scripts based on our self-developed large short drama generation model SkyReels. This leads to a dataset containing 1,000,000,000 pairs of scripts and shooting scripts for short dramas, called SkyScript-100M. We compare SkyScript-100M with the existing dataset in detail and demonstrate some deeper insights that can be achieved based on SkyScript-100M. Based on SkyScript-100M, researchers can achieve several deeper and more far-reaching script optimization goals, which may drive a paradigm shift in the entire field of text-to-video and significantly advance the field of short drama video generation. The data and code are available at https://github.com/vaew/SkyScript-100M.
Abstract:The stacked intelligent metasurface (SIM) emerges as an innovative technology with the ability to directly manipulate electromagnetic (EM) wave signals, drawing parallels to the operational principles of artificial neural networks (ANN). Leveraging its structure for direct EM signal processing alongside its low-power consumption, SIM holds promise for enhancing system performance within wireless communication systems. In this paper, we focus on SIM-assisted multi-user multi-input and single-output (MU-MISO) system downlink scenarios in the transmitter. We proposed a joint optimization method for SIM phase shift configuration and antenna power allocation based on the twin delayed deep deterministic policy gradient (TD3) algorithm to efficiently improve the sum rate. The results show that the proposed algorithm outperforms both deep deterministic policy gradient (DDPG) and alternating optimization (AO) algorithms. Furthermore, increasing the number of meta-atoms per layer of the SIM is always beneficial. However, continuously increasing the number of layers of SIM does not lead to sustained performance improvement.
Abstract:In this paper, we explore the low-complexity optimal bilinear equalizer (OBE) combining scheme design for cell-free massive multiple-input multiple-output networks with spatially correlated Rician fading channels. We provide a spectral efficiency (SE) performance analysis framework for both the centralized and distributed processing schemes with bilinear equalizer (BE)-structure combining schemes applied. The BE-structured combining is a set of schemes that are constructed by the multiplications of channel statistics-based BE matrices and instantaneous channel estimates. Notably, we derive closed-form achievable SE expressions for centralized and distributed BE-structured combining schemes. We propose one centralized and two distributed OBE schemes: Centralized OBE (C-OBE), Distributed OBE based on Global channel statistics (DG-OBE), and Distributed OBE based on Local channel statistics (DL-OBE), which maximize their respective SE expressions. OBE matrices in these schemes are tailored based on varying levels of channel statistics. Notably, we obtain new and insightful closed-form results for the C-OBE, DG-OBE, and DL-OBE combining schemes. Numerical results demonstrate that the proposed OBE schemes can achieve excellent SE, even in scenarios with severe pilot contamination.
Abstract:Effective visual brain-machine interfaces (BMI) is based on reliable and stable EEG biomarkers. However, traditional adaptive filter-based approaches may suffer from individual variations in EEG signals, while deep neural network-based approaches may be hindered by the non-stationarity of EEG signals caused by biomarker attenuation and background oscillations. To address these challenges, we propose the Visual Evoked Potential Booster (VEP Booster), a novel closed-loop AI framework that generates reliable and stable EEG biomarkers under visual stimulation protocols. Our system leverages an image generator to refine stimulus images based on real-time feedback from human EEG signals, generating visual stimuli tailored to the preferences of primary visual cortex (V1) neurons and enabling effective targeting of neurons most responsive to stimuli. We validated our approach by implementing a system and employing steady-state visual evoked potential (SSVEP) visual protocols in five human subjects. Our results show significant enhancements in the reliability and utility of EEG biomarkers for all individuals, with the largest improvement in SSVEP response being 105%, the smallest being 28%, and the average increase being 76.5%. These promising results have implications for both clinical and technological applications
Abstract:Extremely large-scale multiple-input multipleoutput (XL-MIMO) is believed to be a cornerstone of sixth-generation (6G) wireless networks. XL-MIMO uses more antennas to both achieve unprecedented spatial degrees of freedom (DoFs) and exploit new electromagnetic (EM) phenomena occurring in the radiative near-field. The near-field effects provide the XL-MIMO array with depth perception, enabling precise localization and spatially multiplexing jointly in the angle and distance domains. This article delineates the distinctions between near-field and far-field propagation, highlighting the unique EM characteristics introduced by having large antenna arrays. It thoroughly examines the challenges these new near-field characteristics pose for user localization and channel estimation and provides a comprehensive review of new algorithms developed to address them. The article concludes by identifying critical future research directions.
Abstract:The attainment of autonomous operations in mobile computing devices has consistently been a goal of human pursuit. With the development of Large Language Models (LLMs) and Visual Language Models (VLMs), this aspiration is progressively turning into reality. While contemporary research has explored automation of simple tasks on mobile devices via VLMs, there remains significant room for improvement in handling complex tasks and reducing high reasoning costs. In this paper, we introduce MobileExperts, which for the first time introduces tool formulation and multi-agent collaboration to address the aforementioned challenges. More specifically, MobileExperts dynamically assembles teams based on the alignment of agent portraits with the human requirements. Following this, each agent embarks on an independent exploration phase, formulating its tools to evolve into an expert. Lastly, we develop a dual-layer planning mechanism to establish coordinate collaboration among experts. To validate our effectiveness, we design a new benchmark of hierarchical intelligence levels, offering insights into algorithm's capability to address tasks across a spectrum of complexity. Experimental results demonstrate that MobileExperts performs better on all intelligence levels and achieves ~ 22% reduction in reasoning costs, thus verifying the superiority of our design.
Abstract:Extremely large-scale multiple-input multiple-output (XL-MIMO) is crucial for satisfying the high data rate requirements of the sixth-generation (6G) wireless networks. In this context, ensuring accurate acquisition of channel state information (CSI) with low complexity becomes imperative. Moreover, deploying an extremely large antenna array at the base station (BS) might result in some scatterers being located in near-field, while others are situated in far-field, leading to a hybrid-field communication scenario. To address these challenges, this paper introduces two stochastic gradient pursuit (SGP)-based schemes for the hybrid-field channel estimation in two scenarios. For the first scenario in which the prior knowledge of the specific proportion of the number of near-field and far-field channel paths is known, the scheme can effectively leverage the angular-domain sparsity of the far-field channels and the polar-domain sparsity of the near-field channels such that the channel estimation in these two fields can be performed separately. For the second scenario which the proportion is not available, we propose an off-grid SGP-based channel estimation scheme, which iterates through the values of the proportion parameter based on a criterion before performing the hybrid-field channel estimation. We demonstrate numerically that both of the proposed channel estimation schemes achieve superior performance in terms of both estimation accuracy and achievable rates while enjoying lower computational complexity compared with existing schemes. Additionally, we reveal that as the number of antennas at the UE increases, the normalized mean square error (NMSE) performances of the proposed schemes remain basically unchanged, while the NMSE performances of existing ones improve. Remarkably, even in this scenario, the proposed schemes continue to outperform the existing ones.