Abstract:Due to massive computational demands of large generative models, AI-Generated Content (AIGC) can organize collaborative Mobile AIGC Service Providers (MASPs) at network edges to provide ubiquitous and customized content generation for resource-constrained users. However, such a paradigm faces two significant challenges: 1) raw prompts (i.e., the task description from users) often lead to poor generation quality due to users' lack of experience with specific AIGC models, and 2) static service provisioning fails to efficiently utilize computational and communication resources given the heterogeneity of AIGC tasks. To address these challenges, we propose an intelligent mobile AIGC service scheme. Firstly, we develop an interactive prompt engineering mechanism that leverages a Large Language Model (LLM) to generate customized prompt corpora and employs Inverse Reinforcement Learning (IRL) for policy imitation through small-scale expert demonstrations. Secondly, we formulate a dynamic mobile AIGC service provisioning problem that jointly optimizes the number of inference trials and transmission power allocation. Then, we propose the Diffusion-Enhanced Deep Deterministic Policy Gradient (D3PG) algorithm to solve the problem. By incorporating the diffusion process into Deep Reinforcement Learning (DRL) architecture, the environment exploration capability can be improved, thus adapting to varying mobile AIGC scenarios. Extensive experimental results demonstrate that our prompt engineering approach improves single-round generation success probability by 6.3 times, while D3PG increases the user service experience by 67.8% compared to baseline DRL approaches.
Abstract:Web browsing agents powered by large language models (LLMs) have shown tremendous potential in automating complex web-based tasks. Existing approaches typically rely on large LLMs (e.g., GPT-4o) to explore web environments and generate trajectory data, which is then used either for demonstration retrieval (for large LLMs) or to distill small LLMs (e.g., Llama3) in a process that remains decoupled from the exploration. In this paper, we propose AgentSymbiotic, an iterative framework that couples data synthesis with task-performance, yielding a "symbiotic improvement" for both large and small LLMs. Our study uncovers a complementary dynamic between LLM types: while large LLMs excel at generating high-quality trajectories for distillation, the distilled small LLMs-owing to their distinct reasoning capabilities-often choose actions that diverge from those of their larger counterparts. This divergence drives the exploration of novel trajectories, thereby enriching the synthesized data. However, we also observe that the performance of small LLMs becomes a bottleneck in this iterative enhancement process. To address this, we propose two innovations in LLM distillation: a speculative data synthesis strategy that mitigates off-policy bias, and a multi-task learning approach designed to boost the reasoning capabilities of the student LLM. Furthermore, we introduce a Hybrid Mode for Privacy Preservation to address user privacy concerns. Evaluated on the WEBARENA benchmark, AgentSymbiotic achieves SOTA performance with both LLM types. Our best Large LLM agent reaches 52%, surpassing the previous best of 45%, while our 8B distilled model demonstrates a competitive 49%, exceeding the prior best of 28%. Code will be released upon acceptance.
Abstract:This paper investigates the deep learning based approaches for simultaneous wireless information and power transfer (SWIPT). The quality-of-service (QoS) constrained sum-rate maximization problems are, respectively, formulated for power-splitting (PS) receivers and time-switching (TS) receivers and solved by a unified graph neural network (GNN) based model termed SWIPT net (SWIPTNet). To improve the performance of SWIPTNet, we first propose a single-type output method to reduce the learning complexity and facilitate the satisfaction of QoS constraints, and then, utilize the Laplace transform to enhance input features with the structural information. Besides, we adopt the multi-head attention and layer connection to enhance feature extracting. Furthermore, we present the implementation of transfer learning to the SWIPTNet between PS and TS receivers. Ablation studies show the effectiveness of key components in the SWIPTNet. Numerical results also demonstrate the capability of SWIPTNet in achieving near-optimal performance with millisecond-level inference speed which is much faster than the traditional optimization algorithms. We also show the effectiveness of transfer learning via fast convergence and expressive capability improvement.
Abstract:Generative artificial intelligence, particularly through large language models (LLMs), is poised to transform energy optimization and demand side management (DSM) within microgrids. This paper explores the integration of LLMs into energy management, emphasizing their roles in automating the optimization of DSM strategies with electric vehicles. We investigate challenges and solutions associated with DSM and explore the new opportunities presented by leveraging LLMs. Then, We propose an innovative solution that enhances LLMs with retrieval-augmented generation for automatic problem formulation, code generation, and customizing optimization. We present a case study to demonstrate the effectiveness of our proposed solution in charging scheduling and optimization for electric vehicles, highlighting our solution's significant advancements in energy efficiency and user adaptability. This work underscores the potential of LLMs for energy optimization and fosters a new era of intelligent DSM solutions.
Abstract:In this work, we develop a specialized dataset aimed at enhancing the evaluation and fine-tuning of large language models (LLMs) specifically for wireless communication applications. The dataset includes a diverse set of multi-hop questions, including true/false and multiple-choice types, spanning varying difficulty levels from easy to hard. By utilizing advanced language models for entity extraction and question generation, rigorous data curation processes are employed to maintain high quality and relevance. Additionally, we introduce a Pointwise V-Information (PVI) based fine-tuning method, providing a detailed theoretical analysis and justification for its use in quantifying the information content of training data with 2.24\% and 1.31\% performance boost for different models compared to baselines, respectively. To demonstrate the effectiveness of the fine-tuned models with the proposed methodologies on practical tasks, we also consider different tasks, including summarizing optimization problems from technical papers and solving the mathematical problems related to non-orthogonal multiple access (NOMA), which are generated by using the proposed multi-agent framework. Simulation results show significant performance gain in summarization tasks with 20.9\% in the ROUGE-L metrics. We also study the scaling laws of fine-tuning LLMs and the challenges LLMs face in the field of wireless communications, offering insights into their adaptation to wireless communication tasks. This dataset and fine-tuning methodology aim to enhance the training and evaluation of LLMs, contributing to advancements in LLMs for wireless communication research and applications.
Abstract:Semantic communication (SemCom) is an emerging paradigm aiming at transmitting only task-relevant semantic information to the receiver, which can significantly improve communication efficiency. Recent advancements in generative artificial intelligence (GenAI) have empowered GenAI-enabled SemCom (GenSemCom) to further expand its potential in various applications. However, current GenSemCom systems still face challenges such as semantic inconsistency, limited adaptability to diverse tasks and dynamic environments, and the inability to leverage insights from past transmission. Motivated by the success of retrieval-augmented generation (RAG) in the domain of GenAI, this paper explores the integration of RAG in GenSemCom systems. Specifically, we first provide a comprehensive review of existing GenSemCom systems and the fundamentals of RAG techniques. We then discuss how RAG can be integrated into GenSemCom. Following this, we conduct a case study on semantic image transmission using an RAG-enabled diffusion-based SemCom system, demonstrating the effectiveness of the proposed integration. Finally, we outline future directions for advancing RAG-enabled GenSemCom systems.
Abstract:The recent advancements in large language models (LLMs) have significantly improved language understanding and generation capabilities. However, it is difficult to deploy LLMs on resource-constrained edge devices due to their high computational and storage resource demands. To address this issue, we propose a novel LLM model pruning method, namely structurally-aware adaptive pruning (SAAP), to significantly reduce the computational and memory costs while maintaining model performance. We first define an adaptive importance fusion metric to evaluate the importance of all coupled structures in LLMs by considering their homoscedastic uncertainty. Then, we rank the importance of all modules to determine the specific layers that should be pruned to meet particular performance requirements. Furthermore, we develop a new group fine-tuning strategy to improve the inference efficiency of LLMs. Finally, we evaluate the proposed SAAP method on multiple LLMs across two common tasks, i.e., zero-shot classification and text generation. Experimental results show that our SAAP method outperforms several state-of-the-art baseline methods, achieving 2.17%, 2.37%, and 2.39% accuracy gains on LLaMA-7B, Vicuna-7B, and LLaMA-13B. Additionally, SAAP improves the token generation speed by 5%, showcasing its practical advantages in resource-constrained scenarios.
Abstract:Semantic communication has emerged as a promising technology for enhancing communication efficiency. However, most existing research emphasizes single-task reconstruction, neglecting model adaptability and generalization across multi-task systems. In this paper, we propose a novel generative semantic communication system that supports both image reconstruction and segmentation tasks. Our approach builds upon semantic knowledge bases (KBs) at both the transmitter and receiver, with each semantic KB comprising a source KB and a task KB. The source KB at the transmitter leverages a hierarchical Swin-Transformer, a generative AI scheme, to extract multi-level features from the input image. Concurrently, the counterpart source KB at the receiver utilizes hierarchical residual blocks to generate task-specific knowledge. Furthermore, the two task KBs adopt a semantic similarity model to map different task requirements into pre-defined task instructions, thereby facilitating the feature selection of the source KBs. Additionally, we develop a unified residual block-based joint source and channel (JSCC) encoder and two task-specific JSCC decoders to achieve the two image tasks. In particular, a generative diffusion model is adopted to construct the JSCC decoder for the image reconstruction task. Experimental results demonstrate that our multi-task generative semantic communication system outperforms previous single-task communication systems in terms of peak signal-to-noise ratio and segmentation accuracy.
Abstract:This paper investigates intelligent reflecting surface (IRS)-assisted multiple-input single-output (MISO) visible light communication (VLC) networks utilizing the rate-splitting multiple access (RSMA) scheme. {In these networks,} an eavesdropper (Eve) attempts to eavesdrop on communications intended for legitimate users (LUs). To enhance information security and energy efficiency simultaneously, we formulate a secrecy energy efficiency (SEE) maximization problem. In the formulated problem, beamforming vectors, RSMA common rates, direct current (DC) bias, and IRS alignment matrices are jointly optimized subject to constraints on total power budget, quality of service (QoS) requirements, linear operating region of light emitting diodes (LEDs), and common information rate allocation. Due to the non-convex and NP-hard nature of the formulated problem, we propose a deep reinforcement learning (DRL)-based dual-sampling proximal policy optimization (DS-PPO) approach. {The approach leverages} dual sample strategies and generalized advantage estimation (GAE). In addition, to further simplify the design, we adopt the maximum ratio transmission (MRT) and zero-forcing (ZF) as beamforming vectors in the action space. Simulation results show that the proposed DS-PPO approach outperforms traditional baseline approaches in terms of achievable SEE and significantly improves convergence speed compared to the original PPO approach. Moreover, implementing the RSMA scheme and IRS contributes to overall system performance, {achieving approximately $19.67\%$ improvement over traditional multiple access schemes and $25.74\%$ improvement over networks without IRS deployment.
Abstract:This paper delves into an integrated sensing and communication (ISAC) system bolstered by a simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS). Within this system, a base station (BS) is equipped with communication and radar capabilities, enabling it to communicate with ground terminals (GTs) and concurrently probe for echo signals from a target of interest. Moreover, to manage interference and improve communication quality, the rate splitting multiple access (RSMA) scheme is incorporated into the system. The signal-to-interference-plus-noise ratio (SINR) of the received sensing echo signals is a measure of sensing performance. We formulate a joint optimization problem of common rates, transmit beamforming at the BS, and passive beamforming vectors of the STAR-RIS. The objective is to maximize sensing SINR while guaranteeing the communication rate requirements for each GT. We present an iterative algorithm to address the non-convex problem by invoking Dinkelbach's transform, semidefinite relaxation (SDR), majorization-minimization, and sequential rank-one constraint relaxation (SROCR) theories. Simulation results manifest that the performance of the studied ISAC network enhanced by the STAR-RIS and RSMA surpasses other benchmarks considerably. The results evidently indicate the superior performance improvement of the ISAC system with the proposed RSMA-based transmission strategy design and the dynamic optimization of both transmission and reflection beamforming at STAR-RIS.