Abstract:Integrated sensing and communications (ISAC) is expected to be a key technology for 6G, and channel state information (CSI) based sensing is a key component of ISAC. However, current research on ISAC focuses mainly on improving sensing performance, overlooking security issues, particularly the unauthorized sensing of users. In this paper, we propose a secure sensing system (DFSS) based on two distinct diffusion models. Specifically, we first propose a discrete conditional diffusion model to generate graphs with nodes and edges, guiding the ISAC system to appropriately activate wireless links and nodes, which ensures the sensing performance while minimizing the operation cost. Using the activated links and nodes, DFSS then employs the continuous conditional diffusion model to generate safeguarding signals, which are next modulated onto the pilot at the transmitter to mask fluctuations caused by user activities. As such, only ISAC devices authorized with the safeguarding signals can extract the true CSI for sensing, while unauthorized devices are unable to achieve the same sensing. Experiment results demonstrate that DFSS can reduce the activity recognition accuracy of the unauthorized devices by approximately 70%, effectively shield the user from the unauthorized surveillance.
Abstract:Traffic speed prediction is significant for intelligent navigation and congestion alleviation. However, making accurate predictions is challenging due to three factors: 1) traffic diffusion, i.e., the spatial and temporal causality existing between the traffic conditions of multiple neighboring roads, 2) the poor interpretability of traffic data with complicated spatio-temporal correlations, and 3) the latent pattern of traffic speed fluctuations over time, such as morning and evening rush. Jointly considering these factors, in this paper, we present a novel architecture for traffic speed prediction, called Interpretable Causal Spatio-Temporal Diffusion Network (ICST-DNET). Specifically, ICST-DENT consists of three parts, namely the Spatio-Temporal Causality Learning (STCL), Causal Graph Generation (CGG), and Speed Fluctuation Pattern Recognition (SFPR) modules. First, to model the traffic diffusion within road networks, an STCL module is proposed to capture both the temporal causality on each individual road and the spatial causality in each road pair. The CGG module is then developed based on STCL to enhance the interpretability of the traffic diffusion procedure from the temporal and spatial perspectives. Specifically, a time causality matrix is generated to explain the temporal causality between each road's historical and future traffic conditions. For spatial causality, we utilize causal graphs to visualize the diffusion process in road pairs. Finally, to adapt to traffic speed fluctuations in different scenarios, we design a personalized SFPR module to select the historical timesteps with strong influences for learning the pattern of traffic speed fluctuations. Extensive experimental results prove that ICST-DNET can outperform all existing baselines, as evidenced by the higher prediction accuracy, ability to explain causality, and adaptability to different scenarios.
Abstract:In response to the needs of 6G global communications, satellite communication networks have emerged as a key solution. However, the large-scale development of satellite communication networks is constrained by the complex system models, whose modeling is challenging for massive users. Moreover, transmission interference between satellites and users seriously affects communication performance. To solve these problems, this paper develops generative artificial intelligence (AI) agents for model formulation and then applies a mixture of experts (MoE) approach to design transmission strategies. Specifically, we leverage large language models (LLMs) to build an interactive modeling paradigm and utilize retrieval-augmented generation (RAG) to extract satellite expert knowledge that supports mathematical modeling. Afterward, by integrating the expertise of multiple specialized components, we propose an MoE-proximal policy optimization (PPO) approach to solve the formulated problem. Each expert can optimize the optimization variables at which it excels through specialized training through its own network and then aggregates them through the gating network to perform joint optimization. The simulation results validate the accuracy and effectiveness of employing a generative agent for problem formulation. Furthermore, the superiority of the proposed MoE-ppo approach over other benchmarks is confirmed in solving the formulated problem. The adaptability of MoE-PPO to various customized modeling problems has also been demonstrated.
Abstract:Generative Artificial Intelligence (GAI) has recently emerged as a promising solution to address critical challenges of blockchain technology, including scalability, security, privacy, and interoperability. In this paper, we first introduce GAI techniques, outline their applications, and discuss existing solutions for integrating GAI into blockchains. Then, we discuss emerging solutions that demonstrate the effectiveness of GAI in addressing various challenges of blockchain, such as detecting unknown blockchain attacks and smart contract vulnerabilities, designing key secret sharing schemes, and enhancing privacy. Moreover, we present a case study to demonstrate that GAI, specifically the generative diffusion model, can be employed to optimize blockchain network performance metrics. Experimental results clearly show that, compared to a baseline traditional AI approach, the proposed generative diffusion model approach can converge faster, achieve higher rewards, and significantly improve the throughput and latency of the blockchain network. Additionally, we highlight future research directions for GAI in blockchain applications, including personalized GAI-enabled blockchains, GAI-blockchain synergy, and privacy and security considerations within blockchain ecosystems.
Abstract:Generative Diffusion Models (GDMs) have emerged as a transformative force in the realm of Generative Artificial Intelligence (GAI), demonstrating their versatility and efficacy across a variety of applications. The ability to model complex data distributions and generate high-quality samples has made GDMs particularly effective in tasks such as image generation and reinforcement learning. Furthermore, their iterative nature, which involves a series of noise addition and denoising steps, is a powerful and unique approach to learning and generating data. This paper serves as a comprehensive tutorial on applying GDMs in network optimization tasks. We delve into the strengths of GDMs, emphasizing their wide applicability across various domains, such as vision, text, and audio generation.We detail how GDMs can be effectively harnessed to solve complex optimization problems inherent in networks. The paper first provides a basic background of GDMs and their applications in network optimization. This is followed by a series of case studies, showcasing the integration of GDMs with Deep Reinforcement Learning (DRL), incentive mechanism design, Semantic Communications (SemCom), Internet of Vehicles (IoV) networks, etc. These case studies underscore the practicality and efficacy of GDMs in real-world scenarios, offering insights into network design. We conclude with a discussion on potential future directions for GDM research and applications, providing major insights into how they can continue to shape the future of network optimization.
Abstract:With the phenomenal success of diffusion models and ChatGPT, deep generation models (DGMs) have been experiencing explosive growth from 2022. Not limited to content generation, DGMs are also widely adopted in Internet of Things, Metaverse, and digital twin, due to their outstanding ability to represent complex patterns and generate plausible samples. In this article, we explore the applications of DGMs in a crucial task, i.e., improving the efficiency of wireless network management. Specifically, we firstly overview the generative AI, as well as three representative DGMs. Then, a DGM-empowered framework for wireless network management is proposed, in which we elaborate the issues of the conventional network management approaches, why DGMs can address them efficiently, and the step-by-step workflow for applying DGMs in managing wireless networks. Moreover, we conduct a case study on network economics, using the state-of-the-art DGM model, i.e., diffusion model, to generate effective contracts for incentivizing the mobile AI-Generated Content (AIGC) services. Last but not least, we discuss important open directions for the further research.