Abstract:Large model inference is shifting from cloud to edge due to concerns about the privacy of user interaction data. However, edge devices often struggle with limited computing power, memory, and bandwidth, requiring collaboration across multiple devices to run and speed up LLM inference. Pipeline parallelism, the mainstream solution, is inefficient for single-user scenarios, while tensor parallelism struggles with frequent communications. In this paper, we argue that tensor parallelism can be more effective than pipeline on low-resource devices, and present a compute- and memory-efficient tensor parallel inference system, named TPI-LLM, to serve 70B-scale models. TPI-LLM keeps sensitive raw data local in the users' devices and introduces a sliding window memory scheduler to dynamically manage layer weights during inference, with disk I/O latency overlapped with the computation and communication. This allows larger models to run smoothly on memory-limited devices. We analyze the communication bottleneck and find that link latency, not bandwidth, emerges as the main issue, so a star-based allreduce algorithm is implemented. Through extensive experiments on both emulated and real testbeds, TPI-LLM demonstrated over 80% less time-to-first-token and token latency compared to Accelerate, and over 90% compared to Transformers and Galaxy, while cutting the peak memory footprint of Llama 2-70B by 90%, requiring only 3.1 GB of memory for 70B-scale models.
Abstract:Symbiotic communication (SC) is known as a new wireless communication paradigm, similar to the natural ecosystem population, and can enable multiple communication systems to cooperate and mutualize through service exchange and resource sharing. As a result, SC is seen as an important potential technology for future sixth-generation (6G) communications, solving the problem of lack of spectrum resources and energy inefficiency. Symbiotic relationships among communication systems can complement radio resources in 6G. However, the absence of established trust relationships among diverse communication systems presents a formidable hurdle in ensuring efficient and trusted resource and service exchange within SC frameworks. To better realize trusted SC services in 6G, in this paper, we propose a solution that converges SC and blockchain, called a symbiotic blockchain network (SBN). Specifically, we first use cognitive backscatter communication to transform blockchain consensus, that is, the symbiotic blockchain consensus (SBC), so that it can be better suited for the wireless network. Then, for SBC, we propose a highly energy-efficient sharding scheme to meet the extremely low power consumption requirements in 6G. Finally, such a blockchain scheme guarantees trusted transactions of communication services in SC. Through ablation experiments, our proposed SBN demonstrates significant efficacy in mitigating energy consumption and reducing processing latency in adversarial networks, which is expected to achieve a sustainable and trusted 6G wireless network.
Abstract:With the rapid growth of edge intelligence, the deployment of federated learning (FL) over wireless networks has garnered increasing attention, which is called Federated Edge Learning (FEEL). In FEEL, both mobile devices transmitting model parameters over noisy channels and collecting data in diverse environments pose challenges to the generalization of trained models. Moreover, devices can engage in decentralized FL via Device-to-Device communication while the communication topology of connected devices also impacts the generalization of models. Most recent theoretical studies overlook the incorporation of all these effects into FEEL when developing generalization analyses. In contrast, our work presents an information-theoretic generalization analysis for topology-aware FEEL in the presence of data heterogeneity and noisy channels. Additionally, we propose a novel regularization method called Federated Global Mutual Information Reduction (FedGMIR) to enhance the performance of models based on our analysis. Numerical results validate our theoretical findings and provide evidence for the effectiveness of the proposed method.
Abstract:UAV (unmanned aerial vehicle) is gradually entering various human activities. It has also become an important part of satellite-air-ground-sea integrated network (SAGS) for 6G communication. In order to achieve high mobility, UAV has strict requirements on communication latency, and it cannot be illegally controlled as weapons of attack with malicious intentions. Therefore, an efficient and secure communication method specifically designed for UAV network is required. This paper proposes a communication mechanism named ESCM for the above requirements. For high efficiency of communication, ESCM designs a routing protocol based on artificial bee colony algorithm (ABC) for UAV network to accelerate communication between UAVs. Meanwhile, we plan to use blockchain to guarantee the communication security of UAV networks. However, blockchain has unstable links in high mobility network scenarios, resulting in low consensus efficiency and high communication overhead. Therefore, ESCM also introduces the concept of the digital twin, mapping the UAVs from the physical world into Cyberspace, transforming the UAV network into a static network. And this virtual UAV network is called CyberUAV. Then, in CyberUAV, we design a blockchain system and propose a consensus algorithm based on network coding, named proof of network coding (PoNC). PoNC not only ensures the security of ESCM, but also further improves the performance of ESCM through network coding. Simulation results show that ESCM has obvious advantages in communication efficiency and security. Moreover, encoding messages through PoNC consensus can increase the network throughput, and make mobile blockchain static through digital twin can improve the consensus success rate.
Abstract:Due to advantages in security and privacy, blockchain is considered a key enabling technology to support 6G communications. Practical Byzantine Fault Tolerance (PBFT) and RAFT are seen as the most applicable consensus mechanisms (CMs) in blockchain-enabled wireless networks. However, previous studies on PBFT and RAFT rarely consider the channel performance of the physical layer, such as path loss and channel fading, resulting in research results that are far from real networks. Additionally, 6G communications will widely deploy high-frequency signals such as terahertz (THz) and millimeter wave (mmWave), while performances of PBFT and RAFT are still unknown when these signals are transmitted in wireless PBFT or RAFT networks. Therefore, it is urgent to study the performance of non-ideal wireless PBFT and RAFT networks with THz and mmWave signals, to better make PBFT and RAFT play a role in the 6G era. In this paper, we study and compare the performance of THz and mmWave signals in non-ideal wireless PBFT and RAFT networks, considering Rayleigh Fading (RF) and close-in Free Space (FS) reference distance path loss. Performance is evaluated by five metrics: consensus success rate, latency, throughput, reliability gain, and energy consumption. Meanwhile, we find and derive that there is a maximum distance between two nodes that can make CMs inevitably successful, and it is named the active distance of CMs. The research results not only analyze the performance of non-ideal wireless PBFT and RAFT networks, but also provide important references for the future transmission of THz and mmWave signals in PBFT and RAFT networks.
Abstract:Due to advantages in security and privacy, blockchain is considered a key enabling technology to support 6G communications. Practical Byzantine Fault Tolerance (PBFT) is seen as the most applicable consensus mechanism in blockchain-enabled wireless networks. However, previous studies on PBFT do not consider the channel performance of the physical layer, such as path loss and channel fading, resulting in research results that are far from real networks. Additionally, 6G communications will widely deploy high frequency signals such as millimeter wave (mmWave) and terahertz (THz), while the performance of PBFT is still unknown when these signals are transmitted in wireless PBFT networks. Therefore, it is urgent to study the performance of non-ideal wireless PBFT networks with mmWave and THz siganls, so as to better make PBFT play a role in 6G era. In this paper, we study and compare the performance of mmWave and THz signals in non-ideal wireless PBFT networks, considering Rayleigh Fading (RF) and close-in Free Space (FS) reference distance path loss. Performance is evaluated by consensus success rate and delay. Meanwhile, we find and derive that there is a maximum distance between two nodes that can make PBFT consensus inevitably successful, and it is named active distance of PBFT in this paper. The research results not only analyze the performance of non-ideal wireless PBFT networks, but also provide an important reference for the future transmission of mmWave and THz signals in PBFT networks.
Abstract:Federated Learning (FL), as a rapidly evolving privacy-preserving collaborative machine learning paradigm, is a promising approach to enable edge intelligence in the emerging Industrial Metaverse. Even though many successful use cases have proved the feasibility of FL in theory, in the industrial practice of Metaverse, the problems of non-independent and identically distributed (non-i.i.d.) data, learning forgetting caused by streaming industrial data, and scarce communication bandwidth remain key barriers to realize practical FL. Facing the above three challenges simultaneously, this paper presents a high-performance and efficient system named HFEDMS for incorporating practical FL into Industrial Metaverse. HFEDMS reduces data heterogeneity through dynamic grouping and training mode conversion (Dynamic Sequential-to-Parallel Training, STP). Then, it compensates for the forgotten knowledge by fusing compressed historical data semantics and calibrates classifier parameters (Semantic Compression and Compensation, SCC). Finally, the network parameters of the feature extractor and classifier are synchronized in different frequencies (Layer-wiseAlternative Synchronization Protocol, LASP) to reduce communication costs. These techniques make FL more adaptable to the heterogeneous streaming data continuously generated by industrial equipment, and are also more efficient in communication than traditional methods (e.g., Federated Averaging). Extensive experiments have been conducted on the streamed non-i.i.d. FEMNIST dataset using 368 simulated devices. Numerical results show that HFEDMS improves the classification accuracy by at least 6.4% compared with 8 benchmarks and saves both the overall runtime and transfer bytes by up to 98%, proving its superiority in precision and efficiency.
Abstract:Federated learning is gaining popularity as a distributed machine learning method that can be used to deploy AI-dependent IoT applications while protecting client data privacy and security. Due to the differences of clients, a single global model may not perform well on all clients, so the personalized federated learning method, which trains a personalized model for each client that better suits its individual needs, becomes a research hotspot. Most personalized federated learning research, however, focuses on data heterogeneity while ignoring the need for model architecture heterogeneity. Most existing federated learning methods uniformly set the model architecture of all clients participating in federated learning, which is inconvenient for each client's individual model and local data distribution requirements, and also increases the risk of client model leakage. This paper proposes a federated learning method based on co-training and generative adversarial networks(GANs) that allows each client to design its own model to participate in federated learning training independently without sharing any model architecture or parameter information with other clients or a center. In our experiments, the proposed method outperforms the existing methods in mean test accuracy by 42% when the client's model architecture and data distribution vary significantly.
Abstract:Federated Learning (FL) is a machine learning technique that enables participants to train high-quality models collaboratively without exchanging their private data. Participants in cross-silo FL settings are independent organizations with different task needs, and they are concerned not only with data privacy, but also with training independently their unique models due to intellectual property. Most existing FL schemes are incapability for the above scenarios. In this paper, we propose a communication-efficient FL scheme, CoFED, based on pseudo-labeling unlabeled data like co-training. To the best of our knowledge, it is the first FL scheme compatible with heterogeneous tasks, heterogeneous models, and heterogeneous training algorithms simultaneously. Experimental results show that CoFED achieves better performance with a lower communication cost. Especially for the non-IID settings and heterogeneous models, the proposed method improves the performance by 35%.
Abstract:Nowadays, the industrial Internet of Things (IIoT) has played an integral role in Industry 4.0 and produced massive amounts of data for industrial intelligence. These data locate on decentralized devices in modern factories. To protect the confidentiality of industrial data, federated learning (FL) was introduced to collaboratively train shared machine learning models. However, the local data collected by different devices skew in class distribution and degrade industrial FL performance. This challenge has been widely studied at the mobile edge, but they ignored the rapidly changing streaming data and clustering nature of factory devices, and more seriously, they may threaten data security. In this paper, we propose FedGS, which is a hierarchical cloud-edge-end FL framework for 5G empowered industries, to improve industrial FL performance on non-i.i.d. data. Taking advantage of naturally clustered factory devices, FedGS uses a gradient-based binary permutation algorithm (GBP-CS) to select a subset of devices within each factory and build homogeneous super nodes participating in FL training. Then, we propose a compound-step synchronization protocol to coordinate the training process within and among these super nodes, which shows great robustness against data heterogeneity. The proposed methods are time-efficient and can adapt to dynamic environments, without exposing confidential industrial data in risky manipulation. We prove that FedGS has better convergence performance than FedAvg and give a relaxed condition under which FedGS is more communication-efficient. Extensive experiments show that FedGS improves accuracy by 3.5% and reduces training rounds by 59% on average, confirming its superior effectiveness and efficiency on non-i.i.d. data.