Abstract:The emergence of 6th generation (6G) mobile networks brings new challenges in supporting high-mobility communications, particularly in addressing the issue of channel aging. While existing channel prediction methods offer improved accuracy at the expense of increased computational complexity, limiting their practical application in mobile networks. To address these challenges, we present LinFormer, an innovative channel prediction framework based on a scalable, all-linear, encoder-only Transformer model. Our approach, inspired by natural language processing (NLP) models such as BERT, adapts an encoder-only architecture specifically for channel prediction tasks. We propose replacing the computationally intensive attention mechanism commonly used in Transformers with a time-aware multi-layer perceptron (TMLP), significantly reducing computational demands. The inherent time awareness of TMLP module makes it particularly suitable for channel prediction tasks. We enhance LinFormer's training process by employing a weighted mean squared error loss (WMSELoss) function and data augmentation techniques, leveraging larger, readily available communication datasets. Our approach achieves a substantial reduction in computational complexity while maintaining high prediction accuracy, making it more suitable for deployment in cost-effective base stations (BS). Comprehensive experiments using both simulated and measured data demonstrate that LinFormer outperforms existing methods across various mobility scenarios, offering a promising solution for future wireless communication systems.
Abstract:Autoformalization, the task of automatically translating natural language descriptions into a formal language, poses a significant challenge across various domains, especially in mathematics. Recent advancements in large language models (LLMs) have unveiled their promising capabilities to formalize even competition-level math problems. However, we observe a considerable discrepancy between pass@1 and pass@k accuracies in LLM-generated formalizations. To address this gap, we introduce a novel framework that scores and selects the best result from k autoformalization candidates based on two complementary self-consistency methods: symbolic equivalence and semantic consistency. Elaborately, symbolic equivalence identifies the logical homogeneity among autoformalization candidates using automated theorem provers, and semantic consistency evaluates the preservation of the original meaning by informalizing the candidates and computing the similarity between the embeddings of the original and informalized texts. Our extensive experiments on the MATH and miniF2F datasets demonstrate that our approach significantly enhances autoformalization accuracy, achieving up to 0.22-1.35x relative improvements across various LLMs and baseline methods.
Abstract:Gene-gene interactions play a crucial role in the manifestation of complex human diseases. Uncovering significant gene-gene interactions is a challenging task. Here, we present an innovative approach utilizing data-driven computational tools, leveraging an advanced Transformer model, to unearth noteworthy gene-gene interactions. Despite the efficacy of Transformer models, their parameter intensity presents a bottleneck in data ingestion, hindering data efficiency. To mitigate this, we introduce a novel weighted diversified sampling algorithm. This algorithm computes the diversity score of each data sample in just two passes of the dataset, facilitating efficient subset generation for interaction discovery. Our extensive experimentation demonstrates that by sampling a mere 1\% of the single-cell dataset, we achieve performance comparable to that of utilizing the entire dataset.
Abstract:Tactile sensors play a crucial role in enabling robots to interact effectively and safely with objects in everyday tasks. In particular, visuotactile sensors have seen increasing usage in two and three-fingered grippers due to their high-quality feedback. However, a significant gap remains in the development of sensors suitable for humanoid robots, especially five-fingered dexterous hands. One reason is because of the challenges in designing and manufacturing sensors that are compact in size. In this paper, we propose HumanFT, a multimodal visuotactile sensor that replicates the shape and functionality of a human fingertip. To bridge the gap between human and robotic tactile sensing, our sensor features real-time force measurements, high-frequency vibration detection, and overtemperature alerts. To achieve this, we developed a suite of fabrication techniques for a new type of elastomer optimized for force propagation and temperature sensing. Besides, our sensor integrates circuits capable of sensing pressure and vibration. These capabilities have been validated through experiments. The proposed design is simple and cost-effective to fabricate. We believe HumanFT can enhance humanoid robots' perception by capturing and interpreting multimodal tactile information.
Abstract:Dense features, customized for different business scenarios, are essential in short video classification. However, their complexity, specific adaptation requirements, and high computational costs make them resource-intensive and less accessible during online inference. Consequently, these dense features are categorized as `Privileged Dense Features'.Meanwhile, end-to-end multi-modal models have shown promising results in numerous computer vision tasks. In industrial applications, prioritizing end-to-end multi-modal features, can enhance efficiency but often leads to the loss of valuable information from historical privileged dense features. To integrate both features while maintaining efficiency and manageable resource costs, we present Confidence-aware Privileged Feature Distillation (CPFD), which empowers features of an end-to-end multi-modal model by adaptively distilling privileged features during training. Unlike existing privileged feature distillation (PFD) methods, which apply uniform weights to all instances during distillation, potentially causing unstable performance across different business scenarios and a notable performance gap between teacher model (Dense Feature enhanced multimodal-model DF-X-VLM) and student model (multimodal-model only X-VLM), our CPFD leverages confidence scores derived from the teacher model to adaptively mitigate the performance variance with the student model. We conducted extensive offline experiments on five diverse tasks demonstrating that CPFD improves the video classification F1 score by 6.76% compared with end-to-end multimodal-model (X-VLM) and by 2.31% with vanilla PFD on-average. And it reduces the performance gap by 84.6% and achieves results comparable to teacher model DF-X-VLM. The effectiveness of CPFD is further substantiated by online experiments, and our framework has been deployed in production systems for over a dozen models.
Abstract:Previous studies aiming to optimize and bundle-adjust camera poses using Neural Radiance Fields (NeRFs), such as BARF and DBARF, have demonstrated impressive capabilities in 3D scene reconstruction. However, these approaches have been designed for pinhole-camera pose optimization and do not perform well under radial image distortions such as those in fisheye cameras. Furthermore, inaccurate depth initialization in DBARF results in erroneous geometric information affecting the overall convergence and quality of results. In this paper, we propose adaptive GRUs with a flexible bundle-adjustment method adapted to radial distortions and incorporate feature-based recurrent neural networks to generate continuous novel views from fisheye datasets. Other NeRF methods for fisheye images, such as SCNeRF and OMNI-NeRF, use projected ray distance loss for distorted pose refinement, causing severe artifacts, long rendering time, and are difficult to use in downstream tasks, where the dense voxel representation generated by a NeRF method needs to be converted into a mesh representation. We also address depth initialization issues by adding MiDaS-based depth priors for pinhole images. Through extensive experiments, we demonstrate the generalization capacity of FBINeRF and show high-fidelity results for both pinhole-camera and fisheye-camera NeRFs.
Abstract:Scoring rules evaluate probabilistic forecasts of an unknown state against the realized state and are a fundamental building block in the incentivized elicitation of information and the training of machine learning models. This paper develops mechanisms for scoring elicited text against ground truth text using domain-knowledge-free queries to a large language model (specifically ChatGPT) and empirically evaluates their alignment with human preferences. The empirical evaluation is conducted on peer reviews from a peer-grading dataset and in comparison to manual instructor scores for the peer reviews.
Abstract:While deep networks have achieved broad success in analyzing natural images, when applied to medical scans, they often fail in unexcepted situations. We investigate this challenge and focus on model sensitivity to domain shifts, such as data sampled from different hospitals or data confounded by demographic variables such as sex, race, etc, in the context of chest X-rays and skin lesion images. A key finding we show empirically is that existing visual backbones lack an appropriate prior from the architecture for reliable generalization in these settings. Taking inspiration from medical training, we propose giving deep networks a prior grounded in explicit medical knowledge communicated in natural language. To this end, we introduce Knowledge-enhanced Bottlenecks (KnoBo), a class of concept bottleneck models that incorporates knowledge priors that constrain it to reason with clinically relevant factors found in medical textbooks or PubMed. KnoBo uses retrieval-augmented language models to design an appropriate concept space paired with an automatic training procedure for recognizing the concept. We evaluate different resources of knowledge and recognition architectures on a broad range of domain shifts across 20 datasets. In our comprehensive evaluation with two imaging modalities, KnoBo outperforms fine-tuned models on confounded datasets by 32.4% on average. Finally, evaluations reveal that PubMed is a promising resource for making medical models less sensitive to domain shift, outperforming other resources on both diversity of information and final prediction performance.
Abstract:In this paper, we explore a forward-thinking question: Is GPT-4V effective at low-level data analysis tasks on charts? To this end, we first curate a large-scale dataset, named ChartInsights, consisting of 89,388 quartets (chart, task, question, answer) and covering 10 widely-used low-level data analysis tasks on 7 chart types. Firstly, we conduct systematic evaluations to understand the capabilities and limitations of 18 advanced MLLMs, which include 12 open-source models and 6 closed-source models. Starting with a standard textual prompt approach, the average accuracy rate across the 18 MLLMs is 36.17%. Among all the models, GPT-4V achieves the highest accuracy, reaching 56.13%. To understand the limitations of multimodal large models in low-level data analysis tasks, we have designed various experiments to conduct an in-depth test of capabilities of GPT-4V. We further investigate how visual modifications to charts, such as altering visual elements (e.g. changing color schemes) and introducing perturbations (e.g. adding image noise), affect performance of GPT-4V. Secondly, we present 12 experimental findings. These findings suggest potential of GPT-4V to revolutionize interaction with charts and uncover the gap between human analytic needs and capabilities of GPT-4V. Thirdly, we propose a novel textual prompt strategy, named Chain-of-Charts, tailored for low-level analysis tasks, which boosts model performance by 24.36%, resulting in an accuracy of 80.49%. Furthermore, by incorporating a visual prompt strategy that directs attention of GPT-4V to question-relevant visual elements, we further improve accuracy to 83.83%. Our study not only sheds light on the capabilities and limitations of GPT-4V in low-level data analysis tasks but also offers valuable insights for future research.
Abstract:A sequence of predictions is calibrated if and only if it induces no swap regret to all down-stream decision tasks. We study the Maximum Swap Regret (MSR) of predictions for binary events: the swap regret maximized over all downstream tasks with bounded payoffs. Previously, the best online prediction algorithm for minimizing MSR is obtained by minimizing the K1 calibration error, which upper bounds MSR up to a constant factor. However, recent work (Qiao and Valiant, 2021) gives an ${\Omega}(T^{0.528})$ lower bound for the worst-case expected $K_1$ calibration error incurred by any randomized algorithm in T rounds, presenting a barrier to achieving better rates for MSR. Several relaxations of MSR have been considered to overcome this barrier, via external regret (Kleinberg et al., 2023) and regret bounds depending polynomially on the number of actions in downstream tasks (Noarov et al., 2023; Roth and Shi, 2024). We show that the barrier can be surpassed without any relaxations: we give an efficient randomized prediction algorithm that guarantees $O(\sqrt{T}logT)$ expected MSR. We also discuss the economic utility of calibration by viewing MSR as a decision-theoretic calibration error metric and study its relationship to existing metrics.