Abstract:Fine-grained emotion recognition (FER) plays a vital role in various fields, such as disease diagnosis, personalized recommendations, and multimedia mining. However, existing FER methods face three key challenges in real-world applications: (i) they rely on large amounts of continuously annotated data to ensure accuracy since emotions are complex and ambiguous in reality, which is costly and time-consuming; (ii) they cannot capture the temporal heterogeneity caused by changing emotion patterns, because they usually assume that the temporal correlation within sampling periods is the same; (iii) they do not consider the spatial heterogeneity of different FER scenarios, that is, the distribution of emotion information in different data may have bias or interference. To address these challenges, we propose a Spatio-Temporal Fuzzy-oriented Multi-modal Meta-learning framework (ST-F2M). Specifically, ST-F2M first divides the multi-modal videos into multiple views, and each view corresponds to one modality of one emotion. Multiple randomly selected views for the same emotion form a meta-training task. Next, ST-F2M uses an integrated module with spatial and temporal convolutions to encode the data of each task, reflecting the spatial and temporal heterogeneity. Then it adds fuzzy semantic information to each task based on generalized fuzzy rules, which helps handle the complexity and ambiguity of emotions. Finally, ST-F2M learns emotion-related general meta-knowledge through meta-recurrent neural networks to achieve fast and robust fine-grained emotion recognition. Extensive experiments show that ST-F2M outperforms various state-of-the-art methods in terms of accuracy and model efficiency. In addition, we construct ablation studies and further analysis to explore why ST-F2M performs well.
Abstract:The rapid development of Artificial Intelligence (AI) has revolutionized numerous fields, with large language models (LLMs) and computer vision (CV) systems driving advancements in natural language understanding and visual processing, respectively. The convergence of these technologies has catalyzed the rise of multimodal AI, enabling richer, cross-modal understanding that spans text, vision, audio, and video modalities. Multimodal large language models (MLLMs), in particular, have emerged as a powerful framework, demonstrating impressive capabilities in tasks like image-text generation, visual question answering, and cross-modal retrieval. Despite these advancements, the complexity and scale of MLLMs introduce significant challenges in interpretability and explainability, essential for establishing transparency, trustworthiness, and reliability in high-stakes applications. This paper provides a comprehensive survey on the interpretability and explainability of MLLMs, proposing a novel framework that categorizes existing research across three perspectives: (I) Data, (II) Model, (III) Training \& Inference. We systematically analyze interpretability from token-level to embedding-level representations, assess approaches related to both architecture analysis and design, and explore training and inference strategies that enhance transparency. By comparing various methodologies, we identify their strengths and limitations and propose future research directions to address unresolved challenges in multimodal explainability. This survey offers a foundational resource for advancing interpretability and transparency in MLLMs, guiding researchers and practitioners toward developing more accountable and robust multimodal AI systems.
Abstract:Representations learned by self-supervised approaches are generally considered to possess sufficient generalizability and discriminability. However, we disclose a nontrivial mutual-exclusion relationship between these critical representation properties through an exploratory demonstration on self-supervised learning. State-of-the-art self-supervised methods tend to enhance either generalizability or discriminability but not both simultaneously. Thus, learning representations jointly possessing strong generalizability and discriminability presents a specific challenge for self-supervised learning. To this end, we revisit the learning paradigm of self-supervised learning from the perspective of evolutionary game theory (EGT) and outline the theoretical roadmap to achieve a desired trade-off between these representation properties. EGT performs well in analyzing the trade-off point in a two-player game by utilizing dynamic system modeling. However, the EGT analysis requires sufficient annotated data, which contradicts the principle of self-supervised learning, i.e., the EGT analysis cannot be conducted without the annotations of the specific target domain for self-supervised learning. Thus, to enhance the methodological generalization, we propose a novel self-supervised learning method that leverages advancements in reinforcement learning to jointly benefit from the general guidance of EGT and sequentially optimize the model to chase the consistent improvement of generalizability and discriminability for specific target domains during pre-training. Theoretically, we establish that the proposed method tightens the generalization error upper bound of self-supervised learning. Empirically, our method achieves state-of-the-art performance on various benchmarks.
Abstract:Humans excel at adapting perceptions and actions to diverse environments, enabling efficient interaction with the external world. This adaptive capability relies on the biological nervous system (BNS), which activates different brain regions for distinct tasks. Meta-learning similarly trains machines to handle multiple tasks but relies on a fixed network structure, not as flexible as BNS. To investigate the role of flexible network structure (FNS) in meta-learning, we conduct extensive empirical and theoretical analyses, finding that model performance is tied to structure, with no universally optimal pattern across tasks. This reveals the crucial role of FNS in meta-learning, ensuring meta-learning to generate the optimal structure for each task, thereby maximizing the performance and learning efficiency of meta-learning. Motivated by this insight, we propose to define, measure, and model FNS in meta-learning. First, we define that an effective FNS should possess frugality, plasticity, and sensitivity. Then, to quantify FNS in practice, we present three measurements for these properties, collectively forming the \emph{structure constraint} with theoretical supports. Building on this, we finally propose Neuromodulated Meta-Learning (NeuronML) to model FNS in meta-learning. It utilizes bi-level optimization to update both weights and structure with the structure constraint. Extensive theoretical and empirical evaluations demonstrate the effectiveness of NeuronML on various tasks. Code is publicly available at \href{https://github.com/WangJingyao07/NeuronML}{https://github.com/WangJingyao07/NeuronML}.
Abstract:With the development of large language models (LLMs), the ability to handle longer contexts has become a key capability for Web applications such as cross-document understanding and LLM-powered search systems. However, this progress faces two major challenges: performance degradation due to sequence lengths out-of-distribution, and excessively long inference times caused by the quadratic computational complexity of attention. These issues hinder the application of LLMs in long-context scenarios. In this paper, we propose Dynamic Token-Level KV Cache Selection (TokenSelect), a model-agnostic, training-free method for efficient and accurate long-context inference. TokenSelect builds upon the observation of non-contiguous attention sparsity, using Query-Key dot products to measure per-head KV Cache criticality at token-level. By per-head soft voting mechanism, TokenSelect selectively involves a small number of critical KV cache tokens in the attention calculation without sacrificing accuracy. To further accelerate TokenSelect, we designed the Selection Cache based on observations of consecutive Query similarity and implemented efficient dot product kernel, significantly reducing the overhead of token selection. A comprehensive evaluation of TokenSelect demonstrates up to 23.84x speedup in attention computation and up to 2.28x acceleration in end-to-end latency, while providing superior performance compared to state-of-the-art long-context inference methods.
Abstract:Large Language Models (LLMs) have shown remarkable reasoning capabilities on complex tasks, but they still suffer from out-of-date knowledge, hallucinations, and opaque decision-making. In contrast, Knowledge Graphs (KGs) can provide explicit and editable knowledge for LLMs to alleviate these issues. Existing paradigm of KG-augmented LLM manually predefines the breadth of exploration space and requires flawless navigation in KGs. However, this paradigm cannot adaptively explore reasoning paths in KGs based on the question semantics and self-correct erroneous reasoning paths, resulting in a bottleneck in efficiency and effect. To address these limitations, we propose a novel self-correcting adaptive planning paradigm for KG-augmented LLM named Plan-on-Graph (PoG), which first decomposes the question into several sub-objectives and then repeats the process of adaptively exploring reasoning paths, updating memory, and reflecting on the need to self-correct erroneous reasoning paths until arriving at the answer. Specifically, three important mechanisms of Guidance, Memory, and Reflection are designed to work together, to guarantee the adaptive breadth of self-correcting planning for graph reasoning. Finally, extensive experiments on three real-world datasets demonstrate the effectiveness and efficiency of PoG.
Abstract:This paper introduces NeuGPT, a groundbreaking multi-modal language generation model designed to harmonize the fragmented landscape of neural recording research. Traditionally, studies in the field have been compartmentalized by signal type, with EEG, MEG, ECoG, SEEG, fMRI, and fNIRS data being analyzed in isolation. Recognizing the untapped potential for cross-pollination and the adaptability of neural signals across varying experimental conditions, we set out to develop a unified model capable of interfacing with multiple modalities. Drawing inspiration from the success of pre-trained large models in NLP, computer vision, and speech processing, NeuGPT is architected to process a diverse array of neural recordings and interact with speech and text data. Our model mainly focus on brain-to-text decoding, improving SOTA from 6.94 to 12.92 on BLEU-1 and 6.93 to 13.06 on ROUGE-1F. It can also simulate brain signals, thereby serving as a novel neural interface. Code is available at \href{https://github.com/NeuSpeech/NeuGPT}{NeuSpeech/NeuGPT (https://github.com/NeuSpeech/NeuGPT) .}
Abstract:Retrieval module can be plugged into many downstream NLP tasks to improve their performance, such as open-domain question answering and retrieval-augmented generation. The key to a retrieval system is to calculate relevance scores to query and passage pairs. However, the definition of relevance is often ambiguous. We observed that a major class of relevance aligns with the concept of entailment in NLI tasks. Based on this observation, we designed a method called entailment tuning to improve the embedding of dense retrievers. Specifically, we unify the form of retrieval data and NLI data using existence claim as a bridge. Then, we train retrievers to predict the claims entailed in a passage with a variant task of masked prediction. Our method can be efficiently plugged into current dense retrieval methods, and experiments show the effectiveness of our method.
Abstract:Anomaly detection in multivariate time series is challenging as heterogeneous subsequence anomalies may occur. Reconstruction-based methods, which focus on learning nomral patterns in the frequency domain to detect diverse abnormal subsequences, achieve promising resutls, while still falling short on capturing fine-grained frequency characteristics and channel correlations. To contend with the limitations, we introduce CATCH, a framework based on frequency patching. We propose to patchify the frequency domain into frequency bands, which enhances its ability to capture fine-grained frequency characteristics. To perceive appropriate channel correlations, we propose a Channel Fusion Module (CFM), which features a patch-wise mask generator and a masked-attention mechanism. Driven by a bi-level multi-objective optimization algorithm, the CFM is encouraged to iteratively discover appropriate patch-wise channel correlations, and to cluster relevant channels while isolating adverse effects from irrelevant channels. Extensive experiments on 9 real-world datasets and 12 synthetic datasets demonstrate that CATCH achieves state-of-the-art performance.
Abstract:Despite the remarkable success of Large Language Models (LLMs), evaluating their outputs' quality regarding preference remains a critical challenge. Existing works usually leverage a powerful LLM (e.g., GPT4) as the judge for comparing LLMs' output pairwisely, yet such model-based evaluator is vulnerable to conflicting preference, i.e., output A is better than B, B than C, but C than A, causing contradictory evaluation results. To improve model-based preference evaluation, we introduce GED (Preference Graph Ensemble and Denoise), a novel approach that leverages multiple model-based evaluators to construct preference graphs, and then ensemble and denoise these graphs for better, non-contradictory evaluation results. In particular, our method consists of two primary stages: aggregating evaluations into a unified graph and applying a denoising process to eliminate cyclic inconsistencies, ensuring a directed acyclic graph (DAG) structure. We provide theoretical guarantees for our framework, demonstrating its efficacy in recovering the ground truth preference structure. Extensive experiments across ten benchmark datasets show that GED outperforms baseline methods in model ranking, response selection, and model alignment tasks. Notably, GED combines weaker evaluators like Llama3-8B, Mistral-7B, and Qwen2-7B to surpass the performance of stronger evaluators like Qwen2-72B, highlighting its ability to enhance evaluation reliability and improve model performance.