Abstract:The event-based Vision-Language Model (VLM) recently has made good progress for practical vision tasks. However, most of these works just utilize CLIP for focusing on traditional perception tasks, which obstruct model understanding explicitly the sufficient semantics and context from event streams. To address the deficiency, we propose EventVL, the first generative event-based MLLM (Multimodal Large Language Model) framework for explicit semantic understanding. Specifically, to bridge the data gap for connecting different modalities semantics, we first annotate a large event-image/video-text dataset, containing almost 1.4 million high-quality pairs of data, which enables effective learning across various scenes, e.g., drive scene or human motion. After that, we design Event Spatiotemporal Representation to fully explore the comprehensive information by diversely aggregating and segmenting the event stream. To further promote a compact semantic space, Dynamic Semantic Alignment is introduced to improve and complete sparse semantic spaces of events. Extensive experiments show that our EventVL can significantly surpass existing MLLM baselines in event captioning and scene description generation tasks. We hope our research could contribute to the development of the event vision community.
Abstract:With the rapid development of 3D reconstruction technology, the widespread distribution of 3D data has become a future trend. While traditional visual data (such as images and videos) and NeRF-based formats already have mature techniques for copyright protection, steganographic techniques for the emerging 3D Gaussian Splatting (3D-GS) format have yet to be fully explored. To address this, we propose ConcealGS, an innovative method for embedding implicit information into 3D-GS. By introducing the knowledge distillation and gradient optimization strategy based on 3D-GS, ConcealGS overcomes the limitations of NeRF-based models and enhances the robustness of implicit information and the quality of 3D reconstruction. We evaluate ConcealGS in various potential application scenarios, and experimental results have demonstrated that ConcealGS not only successfully recovers implicit information but also has almost no impact on rendering quality, providing a new approach for embedding invisible and recoverable information into 3D models in the future.
Abstract:Domain Adaptive Object Detection (DAOD) transfers knowledge from a labeled source domain to an unannotated target domain under closed-set assumption. Universal DAOD (UniDAOD) extends DAOD to handle open-set, partial-set, and closed-set domain adaptation. In this paper, we first unveil two issues: domain-private category alignment is crucial for global-level features, and the domain probability heterogeneity of features across different levels. To address these issues, we propose a novel Dual Probabilistic Alignment (DPA) framework to model domain probability as Gaussian distribution, enabling the heterogeneity domain distribution sampling and measurement. The DPA consists of three tailored modules: the Global-level Domain Private Alignment (GDPA), the Instance-level Domain Shared Alignment (IDSA), and the Private Class Constraint (PCC). GDPA utilizes the global-level sampling to mine domain-private category samples and calculate alignment weight through a cumulative distribution function to address the global-level private category alignment. IDSA utilizes instance-level sampling to mine domain-shared category samples and calculates alignment weight through Gaussian distribution to conduct the domain-shared category domain alignment to address the feature heterogeneity. The PCC aggregates domain-private category centroids between feature and probability spaces to mitigate negative transfer. Extensive experiments demonstrate that our DPA outperforms state-of-the-art UniDAOD and DAOD methods across various datasets and scenarios, including open, partial, and closed sets. Codes are available at \url{https://github.com/zyfone/DPA}.
Abstract:Tooth point cloud segmentation is a fundamental task in many orthodontic applications. Current research mainly focuses on fully supervised learning which demands expensive and tedious manual point-wise annotation. Although recent weakly-supervised alternatives are proposed to use weak labels for 3D segmentation and achieve promising results, they tend to fail when the labels are extremely sparse. Inspired by the powerful promptable segmentation capability of the Segment Anything Model (SAM), we propose a framework named SAMTooth that leverages such capacity to complement the extremely sparse supervision. To automatically generate appropriate point prompts for SAM, we propose a novel Confidence-aware Prompt Generation strategy, where coarse category predictions are aggregated with confidence-aware filtering. Furthermore, to fully exploit the structural and shape clues in SAM's outputs for assisting the 3D feature learning, we advance a Mask-guided Representation Learning that re-projects the generated tooth masks of SAM into 3D space and constrains these points of different teeth to possess distinguished representations. To demonstrate the effectiveness of the framework, we conduct experiments on the public dataset and surprisingly find with only 0.1\% annotations (one point per tooth), our method can surpass recent weakly supervised methods by a large margin, and the performance is even comparable to the recent fully-supervised methods, showcasing the significant potential of applying SAM to 3D perception tasks with sparse labels. Code is available at https://github.com/CUHK-AIM-Group/SAMTooth.
Abstract:Semi-supervised medical image segmentation aims to leverage limited annotated data and rich unlabeled data to perform accurate segmentation. However, existing semi-supervised methods are highly dependent on the quality of self-generated pseudo labels, which are prone to incorrect supervision and confirmation bias. Meanwhile, they are insufficient in capturing the label distributions in latent space and suffer from limited generalization to unlabeled data. To address these issues, we propose a Latent Diffusion Label Rectification Model (DiffRect) for semi-supervised medical image segmentation. DiffRect first utilizes a Label Context Calibration Module (LCC) to calibrate the biased relationship between classes by learning the category-wise correlation in pseudo labels, then apply Latent Feature Rectification Module (LFR) on the latent space to formulate and align the pseudo label distributions of different levels via latent diffusion. It utilizes a denoising network to learn the coarse to fine and fine to precise consecutive distribution transportations. We evaluate DiffRect on three public datasets: ACDC, MS-CMRSEG 2019, and Decathlon Prostate. Experimental results demonstrate the effectiveness of DiffRect, e.g. it achieves 82.40\% Dice score on ACDC with only 1\% labeled scan available, outperforms the previous state-of-the-art by 4.60\% in Dice, and even rivals fully supervised performance. Code is released at \url{https://github.com/CUHK-AIM-Group/DiffRect}.
Abstract:Recent advancements in large generative models and real-time neural rendering using point-based techniques pave the way for a future of widespread visual data distribution through sharing synthesized 3D assets. However, while standardized methods for embedding proprietary or copyright information, either overtly or subtly, exist for conventional visual content such as images and videos, this issue remains unexplored for emerging generative 3D formats like Gaussian Splatting. We present GaussianStego, a method for embedding steganographic information in the rendering of generated 3D assets. Our approach employs an optimization framework that enables the accurate extraction of hidden information from images rendered using Gaussian assets derived from large models, while maintaining their original visual quality. We conduct preliminary evaluations of our method across several potential deployment scenarios and discuss issues identified through analysis. GaussianStego represents an initial exploration into the novel challenge of embedding customizable, imperceptible, and recoverable information within the renders produced by current 3D generative models, while ensuring minimal impact on the rendered content's quality.
Abstract:The advent of 3D Gaussian Splatting (3D-GS) techniques and their dynamic scene modeling variants, 4D-GS, offers promising prospects for real-time rendering of dynamic surgical scenarios. However, the prerequisite for modeling dynamic scenes by a large number of Gaussian units, the high-dimensional Gaussian attributes and the high-resolution deformation fields, all lead to serve storage issues that hinder real-time rendering in resource-limited surgical equipment. To surmount these limitations, we introduce a Lightweight 4D Gaussian Splatting framework (LGS) that can liberate the efficiency bottlenecks of both rendering and storage for dynamic endoscopic reconstruction. Specifically, to minimize the redundancy of Gaussian quantities, we propose Deformation-Aware Pruning by gauging the impact of each Gaussian on deformation. Concurrently, to reduce the redundancy of Gaussian attributes, we simplify the representation of textures and lighting in non-crucial areas by pruning the dimensions of Gaussian attributes. We further resolve the feature field redundancy caused by the high resolution of 4D neural spatiotemporal encoder for modeling dynamic scenes via a 4D feature field condensation. Experiments on public benchmarks demonstrate efficacy of LGS in terms of a compression rate exceeding 9 times while maintaining the pleasing visual quality and real-time rendering efficiency. LGS confirms a substantial step towards its application in robotic surgical services.
Abstract:U-Net has become a cornerstone in various visual applications such as image segmentation and diffusion probability models. While numerous innovative designs and improvements have been introduced by incorporating transformers or MLPs, the networks are still limited to linearly modeling patterns as well as the deficient interpretability. To address these challenges, our intuition is inspired by the impressive results of the Kolmogorov-Arnold Networks (KANs) in terms of accuracy and interpretability, which reshape the neural network learning via the stack of non-linear learnable activation functions derived from the Kolmogorov-Anold representation theorem. Specifically, in this paper, we explore the untapped potential of KANs in improving backbones for vision tasks. We investigate, modify and re-design the established U-Net pipeline by integrating the dedicated KAN layers on the tokenized intermediate representation, termed U-KAN. Rigorous medical image segmentation benchmarks verify the superiority of U-KAN by higher accuracy even with less computation cost. We further delved into the potential of U-KAN as an alternative U-Net noise predictor in diffusion models, demonstrating its applicability in generating task-oriented model architectures. These endeavours unveil valuable insights and sheds light on the prospect that with U-KAN, you can make strong backbone for medical image segmentation and generation. Project page: https://yes-ukan.github.io/
Abstract:Generative models hold promise for revolutionizing medical education, robot-assisted surgery, and data augmentation for machine learning. Despite progress in generating 2D medical images, the complex domain of clinical video generation has largely remained untapped.This paper introduces \model, an innovative approach to generate medical videos that simulate clinical endoscopy scenes. We present a novel generative model design that integrates a meticulously crafted spatial-temporal video transformer with advanced 2D vision foundation model priors, explicitly modeling spatial-temporal dynamics during video generation. We also pioneer the first public benchmark for endoscopy simulation with video generation models, adapting existing state-of-the-art methods for this endeavor.Endora demonstrates exceptional visual quality in generating endoscopy videos, surpassing state-of-the-art methods in extensive testing. Moreover, we explore how this endoscopy simulator can empower downstream video analysis tasks and even generate 3D medical scenes with multi-view consistency. In a nutshell, Endora marks a notable breakthrough in the deployment of generative AI for clinical endoscopy research, setting a substantial stage for further advances in medical content generation. For more details, please visit our project page: https://endora-medvidgen.github.io/.
Abstract:Domain Adaptive Object Detection (DAOD) models a joint distribution of images and labels from an annotated source domain and learns a domain-invariant transformation to estimate the target labels with the given target domain images. Existing methods assume that the source domain labels are completely clean, yet large-scale datasets often contain error-prone annotations due to instance ambiguity, which may lead to a biased source distribution and severely degrade the performance of the domain adaptive detector de facto. In this paper, we represent the first effort to formulate noisy DAOD and propose a Noise Latent Transferability Exploration (NLTE) framework to address this issue. It is featured with 1) Potential Instance Mining (PIM), which leverages eligible proposals to recapture the miss-annotated instances from the background; 2) Morphable Graph Relation Module (MGRM), which models the adaptation feasibility and transition probability of noisy samples with relation matrices; 3) Entropy-Aware Gradient Reconcilement (EAGR), which incorporates the semantic information into the discrimination process and enforces the gradients provided by noisy and clean samples to be consistent towards learning domain-invariant representations. A thorough evaluation on benchmark DAOD datasets with noisy source annotations validates the effectiveness of NLTE. In particular, NLTE improves the mAP by 8.4\% under 60\% corrupted annotations and even approaches the ideal upper bound of training on a clean source dataset.